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Introduction

Motivations

Atmospheric Chemical Composition
• The atmosphere as a chemical reactor
• Trace species: from ng m−3 to µg m−3

Applications
• Risk assessment (NBC)
• Photochemistry (ozone, nitrogen oxides, volatile organic compounds)
• Transboundary pollution (heavy metals, acid rains)
• Oxidizing power of the atmosphere and lifetime
• Greenhouse gases and radiative effects
• Stratospheric ozone (halogen compounds)
• . . .

Model Uses
• Process studies
• Forecast (e.g. accidental release)
• Impact studies
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Introduction

Forecast and Risk Assessment

Chernobyl Accidental Release, 25 April-5 May 1986
POLYPHEMUS run, Forecast Emergency Center IRSN/CEREA

Chernobyl

1986-04-26T13:03:00

1E-01 1E+00 1E+01 1E+02

D. Quélo, M. Krysta, M. Bocquet, O. Isnard, Y. Minier, and B. Sportisse. Validation of the POLYPHEMUS system: the ETEX,
Chernobyl and Algeciras cases. Atmos. Env., 2007
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Introduction

Impact Studies

POLYPHEMUS Run for the Impact of French Emission of Power Plants
for the Year 2001 (NEC/CAFE Round)

Credit: Yelva Roustan (CEREA)

-10 -5 0 5 10 15 20

lon

35

40

45

50

55

la
t

O3 mean

-0.40

-0.20

-0.10

-0.01

0.01

0.10

0.20

0.40

NOx

VOC

neutral

NOx limited

COV limited

favorable

Case A

Case B

unfavorable

favorable

increasing ozone

B. Sportisse Air Quality Modeling and Simulation TeraTech, 20 June 2007 4 / 28



Introduction

Expertise for Disbenefit Effects and Dilemma

Three Case Studies
• NOx disbenefit
• Reduction of emitted mass versus increase of number for

secondary particles
• Climate change versus air pollution (e.g.: impact of E85 flexfuel or

sulfate aerosols)
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Introduction

Processes
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Introduction

The Arms Race

• Air Quality Models (Chemistry-Transport Models) rely on subgrid
parameterizations.

• The resulting equations generate high-dimensional numerical
issues.

• Both issues (modeling & numerics) are much more challenging for
aerosol dynamics, based on more and more detailed models.

• Yet, even after having tackled these problems, models have to be
carefully used, because of uncertainties. Ensemble modeling is one
possible answer.

• Coupling together observational data and numerical models is
carried out with data assimilation methods. Advanced issues are
related to network design.

• For impact assessment, integrated modeling relies on look-up
tables, to be computed with detailed models.
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Parameterizations

Outline

1 Parameterizations

2 Numerics for CTM

3 Aerosol Modeling and Simulation

4 Towards Integrated Modeling

5 Uncertainty Propagation & Ensemble Forecast

6 Data Assimilation & Inverse Modeling
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Parameterizations

Scales

Microphysics
• Aerosols: 1 nm - 10 µm
• Cloud droplets: 1 - 100 µm
• Rain droplets: 0.01 - 0.1 mm

Numerics (Grid Cell)
• Short-range (CFD): 1 - 10 m
• Regional: 1 km
• Continental: 10-100 km
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Parameterizations

Scavenging of Radionuclides

Gas-Phase or Particle-Bound
Radionuclides

• Detailed microphysics
versus tailored
parameterizations

• Uncertainties: rain
parameters and size
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Towards Micro/Macro Models
• Based on stochastic micro models
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Parameterizations

Segregation Effect

Downdraft O3/Updraft NO
• Rate of the titration reaction

NO+O3 →NO2:

ω = k 〈NO〉 〈O3〉
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Closure Scheme
• State-of-the-art in 3D models:

Is = 0 !
• Towards Large Eddy Simulation ?

Reaction rate (DNS computation; credit: J.F. Vinuesa, JRC)
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Numerics for CTM

Outline

1 Parameterizations
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Numerics for CTM

Time Integration of High-Dimensional Stiff Systems

Model Dimension (State Vector per Grid Cell)
• Passive tracer: 1 tracer
• Gas-phase: 50-100 surrogate species
• Diphasic: 10-50 dissolved species
• Aerosols: 20 species × 10 bins (size) × 1 family (internal mixing)

Wide Range of Timescales (Stiffness)

• From radical (τ = 10−10s) to inert species

Towards Highly Resolved Model
• Next-generation mesoscale model: 1-3 km

grid
• Unstructured meshes near sources ?
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Numerics for CTM

Towards on-line Coupling

Many Motivations
• Physics: conservation of

homogeneous mixing ratio for a
passive tracer (mass consistency
error)

• Numerics: discrepancies in the
wind fields for ρ and c

• Convective episodes

-10 0 10 20 30 40 50 60
35

40

45

50

55

60

65

70

-50

-30

-10

-5

5

10

30

50

Relative difference for the Chernobyl release (fitted w)

B. Sportisse Air Quality Modeling and Simulation TeraTech, 20 June 2007 14 / 28



Aerosol Modeling and Simulation

Outline
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Aerosol Modeling and Simulation

Aerosol Dynamics
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Aerosol Modeling and Simulation

Towards External Mixing of Fractal Particles

Internal mixing with a carbon core

Internal mixing with a carbon surface

External mixing

Mixing state and radiative properties

Spherical case

Soot

Geometrical configuration of soot

B. Sportisse Air Quality Modeling and Simulation TeraTech, 20 June 2007 17 / 28



Towards Integrated Modeling

Outline
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Towards Integrated Modeling

Model Reduction

Arms Race versus Robustness
• Impact studies over many (meteorological) years (Long Range

Transport Air Pollution/Clean Air For Europe)
• “Integrated” modeling:

min
e

Fimpact ◦ FCTM ◦ Feconomic activity(e)

where e stands for emissions
• 4D distributed systems with a few observations versus

low-dimensional models

Many strategies
• Source-Receptor matrices (2500 × 5 × 5 × 5 runs of one

meteorological year)
• Look-up tables (HDMR, chaos expansion)
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In Models We Trust

In Models We Trust
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Uncertainty Propagation & Ensemble Forecast
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Uncertainty Propagation & Ensemble Forecast

Uncertainties in CTM

Major Uncertainties
• Input data: emissions, met. data
• Parameterizations and physics
• Numerics
• Bugs

Data Uncertainties
Cloud attenuation ±30%
Dry deposition (O3 and NO2) ±30%
Boundary Conditions (O3) ±20%
Anthropogenic emissions ±50%
Biogenic emissions ±100%
Photolytic rate ±30%

In Models We Trust: the Overtuning Issue
• Too few observational data (chemical, vertical, time)
• Key target: ozone peak (impact study versus forecast)

Some strategies
• Sensitivity analysis
• Monte Carlo simulations on the basis of Probability Density Functions (PDF)
• Ensemble meteorological forecasts
• Multi-configuration/multi-model runs
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Uncertainty Propagation & Ensemble Forecast

Ensemble Forecast

Ensemble (Set) of Models
E = {Mm(·)}m

• Ensemble mean:

EM(·) =
1
|E|

∑

M∈E

Mm(·)

• Super-ensemble:

ELS(·) =
∑

m
αmMm(·)

with weights αm to forecast
on the basis of past
observations

Ensemble & relative uncertainties (POLYPHEMUS run for ozone)
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Data Assimilation & Inverse Modeling
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Data Assimilation & Inverse Modeling

Background

Monitoring Networks
• Terrestrial sensors
• Satellite data

Key Features
• Variational and sequential methods
• Inverse modeling of emissions
• High-dimensional systems
• Second-order sensitivity

Data assimilation for ozone (Credit: Lin Wu/CLIME/CEREA)
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Data Assimilation & Inverse Modeling

Forecast and Risk Assessment

Source Localization and Operational Forecast of a Release
• Pre-operational case
• Maximum Entropy technique
• POLYPHEMUS run, credit: Marc Bocquet (CEREA)

See
movie
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Data Assimilation & Inverse Modeling

Network Design

IRSN Descartes monitoring network design over France
• to monitor potential radionuclides releases accidents (Credit:

Marc Bocquet, CEREA)
• '20000 simulated releases
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Conclusion

Many Challenging Issues for HPCN

An Increasing Spatial Resolution
• Towards 1-kilometer grid
• Parameterization, adaptive unstructured meshes ?

An Increasing Chemical Resolution
• From surrogate species to chemical species
• Secondary Organic Aerosol, external mixing, . . .

An Increasing Complexity: Coupling Models and Scales
• Towards multi-media integrated modeling
• From off-line coupling to on-line coupling

From Deterministic to Probabilistic Models
• CTM are not deterministic models.
• From all-in-one models to a new generation of modeling systems (ensemble

modeling)
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