Air Quality Modeling and Simulation A Few Issues for HPCN

Bruno Sportisse

CEREA, Joint Laboratory Ecole des Ponts/EDF R&D INRIA/ENPC CLIME project

TeraTech, 20 June 2007

Motivations

Atmospheric Chemical Composition

- The atmosphere as a chemical reactor
- Trace species: from ng m⁻³ to μg m⁻³

Applications

- Risk assessment (NBC)
- Photochemistry (ozone, nitrogen oxides, volatile organic compounds)
- Transboundary pollution (heavy metals, acid rains)
- Oxidizing power of the atmosphere and lifetime
- Greenhouse gases and radiative effects
- Stratospheric ozone (halogen compounds)
- •

Model Uses

- Process studies
- Forecast (e.g. accidental release)
- Impact studies

Forecast and Risk Assessment

Chernobyl Accidental Release, 25 April-5 May 1986

POLYPHEMUS run, Forecast Emergency Center IRSN/CEREA

D. Quélo, M. Krysta, M. Bocquet, O. Isnard, Y. Minier, and B. Sportisse. Validation of the POLYPHEMUS system: the ETEX, Chernobyl and Algeciras cases. *Atmos. Env.*, 2007

Impact Studies

POLYPHEMUS Run for the Impact of French Emission of Power Plants for the Year 2001 (NEC/CAFE Round)

Credit: Yelva Roustan (CEREA)

Expertise for Disbenefit Effects and Dilemma

Three Case Studies

- NO_x disbenefit
- Reduction of *emitted* mass versus increase of number for secondary particles
- Climate change versus air pollution (e.g.: impact of E85 flexfuel or sulfate aerosols)

Processes

The Arms Race

- Air Quality Models (Chemistry-Transport Models) rely on subgrid parameterizations.
- The resulting equations generate high-dimensional numerical issues.
- Both issues (modeling & numerics) are much more challenging for aerosol dynamics, based on more and more detailed models.
- Yet, even after having tackled these problems, models have to be carefully used, because of uncertainties. Ensemble modeling is one possible answer.
- Coupling together observational data and numerical models is carried out with data assimilation methods. Advanced issues are related to network design.
- For impact assessment, integrated modeling relies on look-up tables, to be computed with detailed models.

- Parameterizations
- 2 Numerics for CTM
- 3 Aerosol Modeling and Simulation
- 4 Towards Integrated Modeling
- **5** Uncertainty Propagation & Ensemble Forecast
- 6 Data Assimilation & Inverse Modeling

Scales

Microphysics

- Aerosols: 1 nm 10 μm
- Cloud droplets: 1 100 μm
- Rain droplets: 0.01 0.1 mm

Numerics (Grid Cell)

- Short-range (CFD): 1 10 m
- · Regional: 1 km
- Continental: 10-100 km

Scavenging of Radionuclides

Gas-Phase or Particle-Bound Radionuclides

- Detailed microphysics versus tailored parameterizations
- Uncertainties: rain parameters and size distribution

Size distribution of the aerosol collision efficiency

Towards Micro/Macro Models

Based on stochastic micro models

Segregation Effect

Downdraft O₃/Updraft NO

 Rate of the titration reaction NO+O₃ →NO₂:

$$\omega = k \langle \text{NO} \rangle \langle \text{O}_3 \rangle \left(1 + \frac{\langle \text{NO}' \text{O}_3' \rangle}{\langle \text{NO} \rangle \langle \text{O}_3 \rangle} \right)$$

Closure Scheme

- State-of-the-art in 3D models:
 I_s = 0!
- Towards Large Eddy Simulation ?

Reaction rate (DNS computation; credit: J.F. Vinuesa, JRC)

- Parameterizations
- 2 Numerics for CTM
- 3 Aerosol Modeling and Simulation
- 4 Towards Integrated Modeling
- **5** Uncertainty Propagation & Ensemble Forecast
- 6 Data Assimilation & Inverse Modeling

Time Integration of High-Dimensional Stiff Systems

Model Dimension (State Vector per Grid Cell)

- Passive tracer: 1 tracer
- Gas-phase: 50-100 surrogate species
- Diphasic: 10-50 dissolved species
- Aerosols: 20 species × 10 bins (size) × 1 family (internal mixing)

Wide Range of Timescales (Stiffness)

• From radical ($\tau = 10^{-10}$ s) to inert species

Towards Highly Resolved Model

- Next-generation mesoscale model: 1-3 km grid
- Unstructured meshes near sources ?

Towards on-line Coupling

Many Motivations

- Physics: conservation of homogeneous mixing ratio for a passive tracer (mass consistency error)
- Numerics: discrepancies in the wind fields for ρ and c
- Convective episodes

Relative difference for the Chernobyl release (fitted w)

- Parameterizations
- 2 Numerics for CTM
- 3 Aerosol Modeling and Simulation
- 4 Towards Integrated Modeling
- **5** Uncertainty Propagation & Ensemble Forecast
- 6 Data Assimilation & Inverse Modeling

Aerosol Dynamics

Towards External Mixing of Fractal Particles

- Parameterizations
- 2 Numerics for CTM
- 3 Aerosol Modeling and Simulation
- **4** Towards Integrated Modeling
- **5** Uncertainty Propagation & Ensemble Forecast
- 6 Data Assimilation & Inverse Modeling

Model Reduction

Arms Race versus Robustness

- Impact studies over many (meteorological) years (Long Range Transport Air Pollution/Clean Air For Europe)
- "Integrated" modeling:

$$\min_{e} F_{\text{impact}} \circ F_{\text{CTM}} \circ F_{\text{economic activity}}(e)$$

where e stands for emissions

 4D distributed systems with a few observations versus low-dimensional models

Many strategies

- Source-Receptor matrices (2500 × 5 × 5 × 5 runs of one meteorological year)
- Look-up tables (HDMR, chaos expansion)

In Models We Trust

- Parameterizations
- 2 Numerics for CTV
- 3 Aerosol Modeling and Simulation
- 4 Towards Integrated Modeling
- **5** Uncertainty Propagation & Ensemble Forecast
- 6 Data Assimilation & Inverse Modeling

Uncertainties in CTM

Major Uncertainties

- Input data: emissions, met. data
- Parameterizations and physics
- Numerics
- Bugs

Data	Uncertainties
Cloud attenuation	±30%
Dry deposition (O ₃ and NO ₂)	$\pm 30\%$
Boundary Conditions (O ₃)	$\pm 20\%$
Anthropogenic emissions	$\pm 50\%$
Biogenic emissions	$\pm 100\%$
Photolytic rate	$\pm 30\%$

In Models We Trust: the Overtuning Issue

- Too few observational data (chemical, vertical, time)
- Key target: ozone peak (impact study versus forecast)

Some strategies

- Sensitivity analysis
- Monte Carlo simulations on the basis of Probability Density Functions (PDF)
- Ensemble meteorological forecasts
- Multi-configuration/multi-model runs

Ensemble Forecast

Ensemble (Set) of Models $\mathcal{E} = \{M_m(\cdot)\}_m$

Ensemble mean:

$$EM(\cdot) = \frac{1}{|\mathcal{E}|} \sum_{M \in \mathcal{E}} M_m(\cdot)$$

· Super-ensemble:

$$ELS(\cdot) = \sum_{m} \alpha_{m} M_{m}(\cdot)$$

with weights α_m to forecast on the basis of past observations

Ensemble & relative uncertainties (POLYPHEMUS run for ozone)

- Parameterizations
- 2 Numerics for CTV
- 3 Aerosol Modeling and Simulation
- 4 Towards Integrated Modeling
- 6 Uncertainty Propagation & Ensemble Forecast
- 6 Data Assimilation & Inverse Modeling

Background

Monitoring Networks

- Terrestrial sensors
- Satellite data

Key Features

- · Variational and sequential methods
- Inverse modeling of emissions
- High-dimensional systems
- Second-order sensitivity

Data assimilation for ozone (Credit: Lin Wu/CLIME/CEREA)

Inverse modeling of NO_v emissions

Forecast and Risk Assessment

Source Localization and Operational Forecast of a Release

- Pre-operational case
- Maximum Entropy technique
- POLYPHEMUS run, credit: Marc Bocquet (CEREA)

See movie

Network Design

IRSN Descartes monitoring network design over France

- to monitor potential radionuclides releases accidents (Credit: Marc Bocquet, CEREA)
- ~20000 simulated releases

Many Challenging Issues for HPCN

An Increasing Spatial Resolution

- Towards 1-kilometer grid
- Parameterization, adaptive unstructured meshes?

An Increasing Chemical Resolution

- From surrogate species to chemical species
- Secondary Organic Aerosol, external mixing, . . .

An Increasing Complexity: Coupling Models and Scales

- Towards multi-media integrated modeling
- From off-line coupling to on-line coupling

From Deterministic to Probabilistic Models

- CTM are not deterministic models.
- From all-in-one models to a new generation of modeling systems (ensemble modeling)