

Aim High Intel Technical Update Teratec '07 Symposium

June 20, 2007

Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group

Risk Factors

Today's presentations contain forward-looking statements. All statements made that are not historical facts are subject to a number of risks and uncertainties, and actual results may differ materially. Please refer to our most recent Earnings Release and our most recent Form 10-Q or 10-K filing available on our website for more information on the risk factors that could cause actual results to differ.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations (http://www.intel.com/performance/resources/limits.htm).

Real World Problems Driving Petascale & Beyond

Silicon Future

Intel Design & Process Cadence

All dates, product descriptions, availability and plans are forecasts and subject to change without notice.

Assuming approx. 100Glops processors * Petascale assumes 10's of PF Peak Performance and 1PF Sustained Performance on HPC Applications.

Why Multi-Core?

1.00x

Max Frequency Relative single-core frequency and Vcc

Over-clocking

Relative single-core frequency and Vcc

Under-clocking

Relative single-core frequency and Vcc

Multi-Core Energy-Efficient Performance

Relative single-core frequency and Vcc

Multi-threaded Cores

Goal: Energy Efficient Petascale with Multi-threaded Cores

Note: the above pictures don't represent any current or future Intel products

Increasing Throughput through Parallelism Amdahl's Law: Parallel Speedup = 1/(Serial% + (1-Serial%)/N*)

144 Cores

Single Core Performance Relative Performance

Teraflops Research Chip 100 Million Transistors • 80 Tiles • 275mm²

First tera-scale programmable silicon: - Teraflops performance - Tile design approach - On-die mesh network - Novel clocking - Power-aware capability - Supports 3D-memory Not designed for IA or product

What is Tera-scale? Teraflops of performance operating on Terabytes of data

Tera-scale Introduction

- Represents significant Intel transition from "large" cores to 32+ low-power, highly-threaded IA cores per die
- Motivations for a new architecture
 - Enable emerging workloads and new use-models
 - Low Power IA cores provide 4-5X greater performance-power efficiency
 - Scaling beyond the limits of Instruction level parallelism and single-core power
- Tera-scale is *NOT* simply SMP-on-die
 - Will require complete platform and software enabling

Parameter	SMP	Tera-scale	Improvement	Optimizations
Bandwidth	12 GB/s	~1.2 TB/s	~100X	Massive bandwidth between cores
Latency	400 cycles	20 cycles	~20X	Ultra-fast synchronization

Intel Tera-scale Research

100+ Research Projects Worldwide

ACCELERATE TRANSITION TO PARALLEL PROGRAMMING

University Outreach Intel ® Press Intel® Software College

www.intel.com/software/products

Expected Tera-scale Insights

- Power management of many cores
 - Research prototype enables extensive studies on fabric and core power consumption & management
- Physical implementation challenges of high speed fabric and multiple cores
- 3D stacked silicon technology
- On-chip bandwidth and latency impact

Tiled Design & Mesh Network

Repeated Tile Method:

- Compute + router
- Modular, scalable
- Small design teams
- Short design cycle

Mesh Interconnect:

- "Network-on-a-Chip"
 - Cores networked in a grid allows for super hig communications in and between cores
- 5-port, 80GB/s* routers
- Low latency (1.25ns*)
- Future: connect IA/or and special purpose cores

* When operating at a nominal speed of 4GHz

Fine Grain Power Management

- Novel, modular clocking scheme saves power over global clock
- New instructions to make any core sleep or wake as apps demand
- Chip Voltage & freq. control (0.7-1.3V, 0-5.8GHz)

Dynamic sleep

STANDBY:

Memory retains data
50% less power/tile
FULL SLEEP:
Memories fully off
80% less power/tile

21 sleep regions per tile (not all shown)

Industry leading energy-efficiency of 16 Gigaflops/Watt

Research Data Summary

Frequency	Voltage	Power	Bisection Bandwidth	Performance
3.16 GHz	0.95 V	62W	1.62 Terabits/s	1.01 Teraflops
5.1 GHz	1.2 V	175W	2.61 Terabits/s	1.63 Teraflops
5.7 GHz	1.35 V	265W	2.92 Terabits/s	1.81 Teraflops

More than the Cores

Assuming approx. 100Glops processors * Petascale assumes 10's of PF Peak Performance and 1PF Sustained Performance on HPC Applications.

Increasing Processor Performance Through Multi-threaded Cores

		FI	ops				
1.E+14							
1.E+13							
1.E+12 Tera							
1.E+11					1 ****		
1.E+10				In	tel® Core™	uArch	
1.E+09 <i>Giga</i>	Pentium®	III Architecture	Pent	ium® 4 Architec	ture		
		Pen	tium® II Archite	cture			
1.2+00	400	Pentium® A	rchitecture				
<u>1.E+0</u> <u>386</u>	480						
7 1.E+06							
1985	1990	1995	2000	2005	2010		
Reaching Petascale with ~5,000 Processors							

Increasing I/O Signaling Rate to Fill the Gap

Silicon Photonics

Source: Intel

Increasing Memory Bandwidth to Keep Pace

3D Memory Stacking

What can we expect!

