

USE OF SCILAB FOR SPACE MISSION ANALYSIS AND FLIGHT DYNAMICS ACTIVITIES

Thierry Martin

CNES

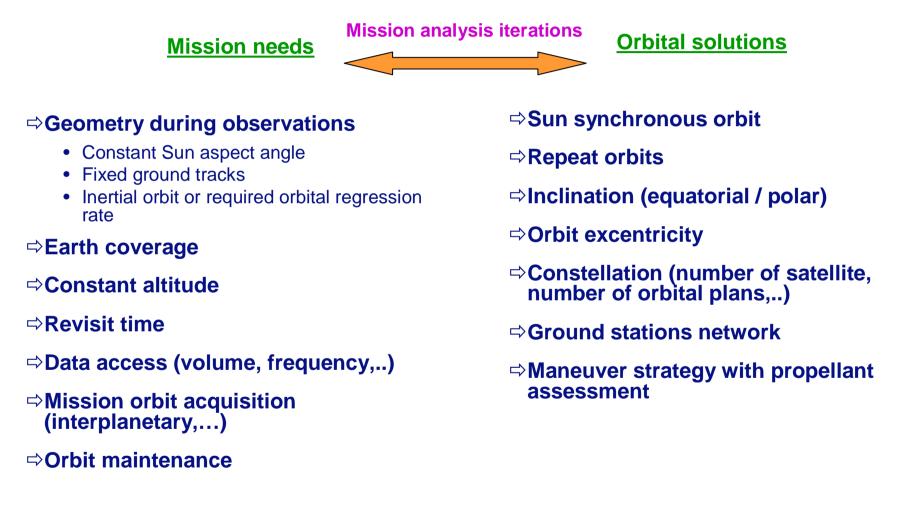
Scilabtec'09

- Scilab is now widely used in CNES, in various engineering fields, such as Telecommunications, RF analysis, Navigation, Attitude Control System analysis,...
- ⇒ This presentation explains how Scilab is used for Flight Dynamics activities, with selected examples in:
 - Mission analysis
 - → Mission analysis for advanced studies (PASO activities)
 - Operational mission analysis (Automated Transfer Vehicle (ATV) mission opportunities)
 - Development of new algorithms
 - Flight dynamics operational systems
 - → Operations for early orbit acquisition
 - → Debris conjunction analysis in ATV-CC

Scilab for Mission Analysis

2 examples:

- ⇒ Mission analysis for advanced studies
- ⇒ **ATV** rendezvous opportunities



- Advanced studies are carried out by a dedicated organization (PASO: "Plateau d'Architecture des Systèmes Orbitaux") through a concurrent design process using its associated Concurrent Design Facility.
- Based on users needs (Science, Earth observation, Security / Defence,..) and after a selection process, the Paso study plan (about ten advanced projects per year) is established annually.
- ⇒ Output of an advanced study:
 - Clear and structured user needs
 - Comprehensive assessment of system concepts (constraints identification)
 - Mission design and system optimisation,
 - → Orbit design based on mission requirements
 - → Orbit analysis to assess impacts on satellite (power, thermal control, fuel budget,...)
 - Analyse different options of partnership and their impacts on cost or system definition
 - Propose a development rationale and R&D action plan (technologies evaluation)

Mission analysis for advanced studies

Why Scilab for advanced studies mission analysis ?

Phase 0 studies general features

- \Rightarrow Duration: a few weeks \rightarrow a few months
- ⇒About ten advanced studies per year
- ⇒High level of innovation
- ⇒Orders of magnitude needed
- ⇒Parametric / sensibility studies needed
- ⇒Balance between accurate analysis and order of magnitude evaluation
- ⇔Trade-offs
- ⇒No strict framework → proposals welcome

Tool desired qualities

- ⇒Rapid development of scripts
- ⇒Add-ons or tailoring of Flight Dynamics (FD) software needed
- ⇒SciLab scripts have to work in conjunction with other software
- ⇒SciLab applications with MMI for recurrent problems
- ⇒Toolbox developments for easy reuse
- ⇔Flexibility
- ⇒Easy interface

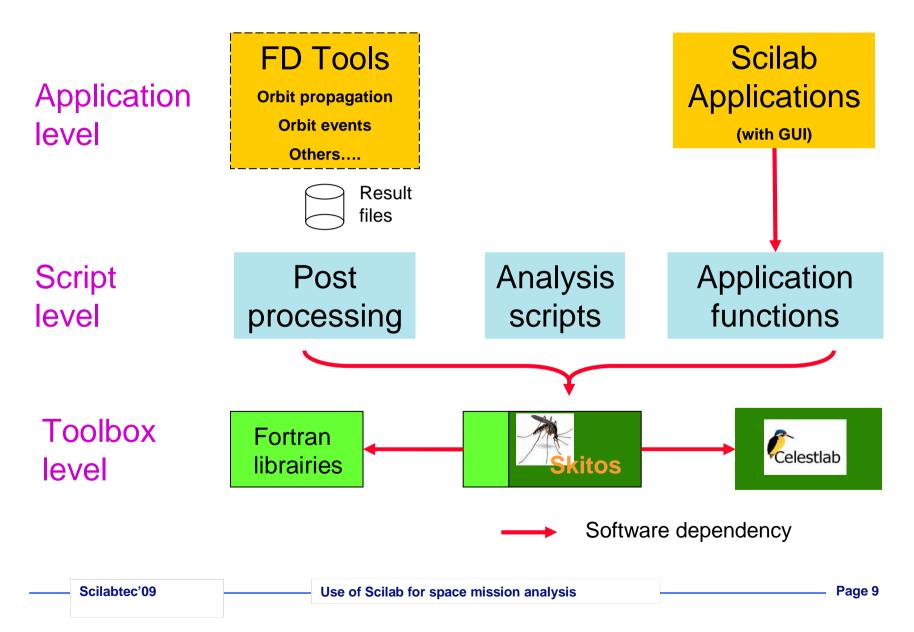
Mission Analysis Tool boxes

- ⇒ Based on previous library SpaceLab
- ⇒ New design in order to be a SciLab Associated External Module
- ⇒ Modular Flight Dynamics library
- ⇒ Validated against CNES legacy software
- ⇒ All functions written in SciLab so far
- ⇒ Comprehensive documentation including sketches and bibliography
- ⇒ Conventions for naming
 - CL_iersMeanObliquity (functions)
 - %CL_mu (constants)

⇒<u>S</u>ciLab <u>KIT</u> for <u>O</u>rbit <u>S</u>tudies

- ⇒Follow toolbox guidelines
- ⇒Extension of CelestLab
- ⇒Depends on CelestLab
- ⇒For CNES internal use
- ⇒Functions that may migrate to CelestLab (functions under evaluation)
- ⇒Functions that depend on other libraries (FORTRAN) → OS dependent

Celestlab : a mission analysis toolbox


- ➡ Coordinates & Frames
- ⇒ Trajectory & Maneuvers
- ⇒ Orbit properties
- ⇒ Interplanetary
- ⇒ Geometry and Events
- ⇒ Relative motion
- ⇒ Models
- ⇒ Orbutils

ichier ?	
) Browser	
	total delta-v requirement [m/s] (1xN)
SCLOHESSY-WILTSHIRE	Description • ma_bielliptic(1,1,2,th) computes the total delta-v requirement for a bi-elliptical Hohmann transfer from a geocentric circular orbit of radius r1 to one of radius r2. The apogee of the elliptic orbit being rh. Output delta-v is the sum of delta-v required to change from orbit 1 to 2, 3 and 4 consecutively. Delta-v impulsions are performed at points A, B and C. • fh • f2 • f2 • f3 • f4 • f4 • f4 • f4 • f4 • f5 • f4 • f5 • f4 • f6 • f4 •
ma_consumption ma_execman ma_hohmann ma_hohmannG ma_hohmannG ma_inclination ma_inclination ma_orbtShape ma_orbtShape ma_outplan	Examples
ma_thrust_duration SL_ORBIT_PROPERTIES	//UTILISATION EXAMPLES
SL_ORBIT_PROPERTIES	r1 = 706000
L_ORBITAL_EVENTS	r2 = 10500000
SL_ORBITAL_EVENTS	rh = 210000000:10000:220000000
L_PLOT	[delta_v]=ma_bielliptic(r1,r2,rh)
SL_PLOT	
L_READ_WRITE	//VALIDATION EXAMPLES
SL_READ_WRITE	r1=7000000
L_REMOTE_SENSING	r2=105000000
SL_REMOTE_SENSING	rh=[210000000 210000000]
5L_UNIT_FUNCTIONS	
SL_UNIT_FUNCTIONS	[delta_v]=ma_bielliptic(r1,r2,rh)
SL_UTILS	<pre>//expected results // delta v =</pre>
🗀 SL_UTILS 🛛 🔍	

Use of Scilab for space mission analysis

Scilab within the tool Mission Analysis environment

Example of Scilab application with GUI (1)

Application phasag Close Abor Application p

⇒Example of application: **Computation of** repeat orbits characteristics

⇒GUI allows easy use of the tools

⇒Interface (functions) available for parametric studies

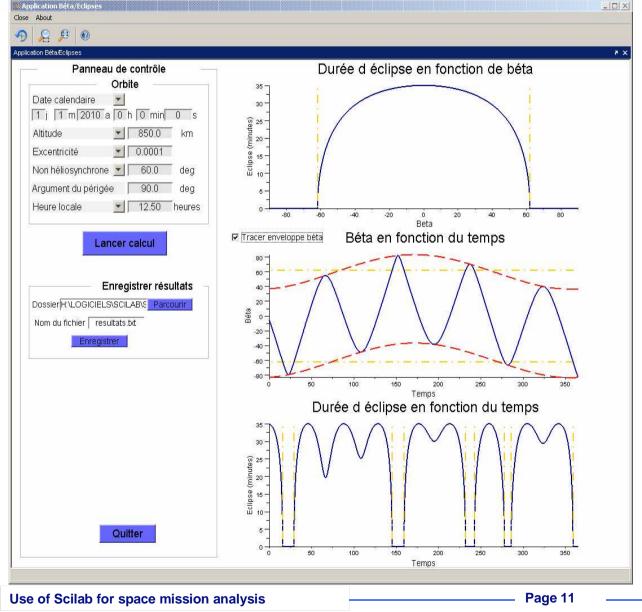
⇒Low level functions available in CelestLab

0.0001 0.0001	Panneau de contrôle	1					Rés	ultats				
ision non héliosynchrone ▼ 0 du 0m resis 0mote degy Notate jours 0mote degy 0mote de	Inclinaison										-	
98.25 deg cycle orm orm ores org org <thorg< th=""> org org <</thorg<>				_								
98:25 deg Excentricité Excentricité C 15 6 23 351 6770.782.85 300 92.3826.85 26.416.26.3 25.992.33 0.872768.4 tricité I 5 8 31 473 6780.1511 30 92.3826.85 28.956.80 6741573 0.00011 I 15 1 4 61 6780.4327 30 92.387341 3318304 23.6956.80 6741573 0.00011 I 15 1 4 61 6780.4323 30 92.442015 23.81280 0.7157058 0.00011 I I 5 21 320 6786.3077 30 92.442015 23.6120 0.7157058 0.00011 I I 7.2 442 6765.3077 30 92.442055 20.647130 23.62204 0.9448018 echerche d orbites I I 7.2 842 6767.1303 30 92.440205 20.6471301 23.6234 13.989614 e maximum I 2.0 I	linaison non héliosynchrone 🛛 💌		N	8	Q		(km)	(deg)			(deg)	
C 15 7 27 412 6778/7222 30 992/32686 28.4462.63 28.492.33 0872/3423 Excentricité IS 9 35 534 6780 113 992/3862 30.3994 23.40657 534.69 697.64237 30 992/38624 30.3994 23.40657 536.69 697.64237 30 992/49382 32.88696 0.676.1094 Iricité IS 8 35 503 678.49845 30 992/49382 32.88192 23.81095 0.9144796 O0001 IS 5 21 320 678.6326 30 92.450765 24.60632 23.81204 0.9144796 Mode de calcul Incr IS 6 21 320 8787.1805 30 92.450765 24.60632 23.82204 0.9144796 Incr Is 5 21 320 8787.1805 30 92.450765 24.60632 23.82204 1.3298614 1.3998614 Incr Is 500.0 Km Incr Incr Incr Incr Incr Incr	09.25 dog		15	6	23		6779 285	30			23 589744	
Excentricité 15 8 31 473 67801511 30 92.336251 30.22894 23.54008 0.7610944 tricité I 9 93 553 6782.6423 30 92.33741 3919304 23.6505 23.81091 0.6741573 0.0001 I I 6 8 33 503 6784.6423 30 92.34731 3919304 23.60657 5.9016332 23.81091 0.814753 0.0001 I I 7 29 442 6783.077 30 92.442012 23.81262 23.81091 0.814753 0.0001 I I 7 29 442 6785.3077 30 92.442852 23.61204 19.84819 0.814753 Mode de calcul I </td <td> 98.25 deg</td> <td></td>	98.25 deg											
Mode de calcul erche d orbites echerche d orbites eminimum f 650.0 km phasage min 2 jours	Eveentrielté	С										
Mode de calcul erche d orbites echerche d orbites eminimum f 650.0 km phasage min 2 jours	Excernificite	0		9	35	534			92.342087	34.243524	23.595506	0.6741573
Mode de calcul erche d orbites echerche d orbites eminimum f 650.0 km phasage min 2 jours	entricité 🔹	0										
Mode de calcul erche d orbites echerche d orbites eminimum f 650.0 km phasage min 2 jours		<u> </u>										
Mode de calcul erche d orbites echerche d orbites eminimum f 650.0 km phasage min 2 jours	0.0001	C C										
Mode de calcul erche d orbites echerche d orbites eminimum f 650.0 km phasage min 2 jours	1.00000000											
Mode de calcul Nombre de résultats 186 Page: 1 Page précédente Page suivante echerche d orbites Remplissage de l'intertrace echerche d orbites Page précédente Page suivante ennimum 500.0 km phasage man 25 jours résultats par colonne croissante: Content of the suitats president axe												
Mode de calcul Remplissage de l'intertrace echerche d orbites Remplissage de l'intertrace echerche d orbites Remplissage de l'intertrace phasage min 2 jours phasage max 35 jours phasage max 2 jours phasa		1000000										
a minimum 500.0 km a maximum 500.0 km a maximum 2 jours phasage min 2 jours phasage max 35 jours résultats par colonne croissante : 0 2 4 6 8 10 12 14 16 18 20 22 Demi grand axe 0 2 4 6 8 10 12 14 16 18 20 22 Inregistrer résultats 0 2 4 6 8 10 12 14 16 18 20 22 Jichier resultats.bt. 0 2 1 4 6 10 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 10 10 uitchier resultats.bt. 0 10 12 14 16 18 10 uitchier resultats.bt. 0 10 12 16 16 18 10 10 uitchier resultats.bt. 0 10 10 10 10 10 uitchier resultats.bt. 0 10 10 10 10 10 10 uitchier resultats.bt. 0 10 10 10 10 10 10 10 10 10 10 10 10 10	Mode de calcul			Juito	11.5	100	rage.	10	Tage pre	eegerne	T age suit	on itto
a minimum 500.0 km a maximum 500.0 km a maximum 2 jours phasage min 2 jours phasage max 35 jours résultats par colonne croissante : 0 2 4 6 8 10 12 14 16 18 20 22 Demi grand axe 0 2 4 6 8 10 12 14 16 18 20 22 Inregistrer résultats 0 2 4 6 8 10 12 14 16 18 20 22 Jichier resultats.bt. 0 2 1 4 6 10 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 10 10 uitchier resultats.bt. 0 10 12 14 16 18 10 uitchier resultats.bt. 0 10 12 16 16 18 10 10 uitchier resultats.bt. 0 10 10 10 10 10 uitchier resultats.bt. 0 10 10 10 10 10 10 uitchier resultats.bt. 0 10 10 10 10 10 10 10 10 10 10 10 10 10		thug				Ē	amnlie	ances	de l'int	ortrace		
a minimum 500.0 km a maximum 500.0 km a maximum 2 jours phasage min 2 jours phasage max 35 jours résultats par colonne croissante : 0 2 4 6 8 10 12 14 16 18 20 22 Demi grand axe 0 2 4 6 8 10 12 14 16 18 20 22 Inregistrer résultats 0 2 4 6 8 10 12 14 16 18 20 22 Jichier resultats.bt. 0 2 1 4 6 10 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 20 12 uitchier resultats.bt. 0 10 12 14 16 18 10 10 uitchier resultats.bt. 0 10 12 14 16 18 10 uitchier resultats.bt. 0 10 12 16 16 18 10 10 uitchier resultats.bt. 0 10 10 10 10 10 uitchier resultats.bt. 0 10 10 10 10 10 10 uitchier resultats.bt. 0 10 10 10 10 10 10 10 10 10 10 10 10 10	nerche d orbites	buo					tempne	saye	ue i int	cruace	63.	
a minimum 500.0 km a maximum 500.0 km a maximum 2 jours phasage min 2 jours phasage max 35 jours résultats par colonne croissante : 0 2 4 6 8 10 12 14 16 18 20 22 Demi grand axe 0 2 4 6 8 10 12 14 16 18 20 22 Inregistrer résultats 0 2 4 6 8 10 12 14 16 18 20 22 H:LOGICIELS/SCIL Parcourir 10 10 12 14 16 18 20 22 Jichier resultats.bt. 10 10 12 14 16 18 20 12 uitchier resultats.bt. 10 10 12 14 16 18 20 12 uitchier resultats.bt. 10 10 12 14 16 18 20 12 Uttter 10 10 12 14 16 18 20 12	Brand brance to control to the balance	<u> </u>	2									
e maximum 6 650.0 km phasage max 35 jours phasage max 35 jours résultats par colonne croissante: Demi grand axe Lancer calcul nregistrer résultats H:U.OGICIELSVSCIL Parcourr J fichier resultats.bt Enregistrer	Recherche d'orbites	0 02	01-		1		J		. 📥	<u>J</u> L		
e maximum 6 650.0 km phasage max 35 jours résultats par colonne croissante: Demi grand axe Lancer calcul nregistrer résultats Ht/LOGICIELS/SCIL Parcourr J fichier resultats.bt Enregistrer	do minimum 💌 500.0 km		. 1.		J		Jeeselee					
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40		<u>a</u>			l		1 1		1	1 1		1
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	de maximum 💌 🛛 650.0 km	9 ¹	87		7		1					
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	e phasage min 2 jours		4						·			
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40		ju i i i i i i i i i i i i i i i i i i i	2 + -			· 			• {			
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40		ti 1	0+-			· ¦	📥 +		· +			· - +
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	and the second	Ū.	s7-	aaa)	4				· •			·-+
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	Demi grand axe 🛛 🔀	<u>e</u>	64-		1		J					
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40		Sec.	1				1					
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40		trac	74	aaad	l				1		man loon	
Inregistrer résultats 40 35 30 30 325 40 30 30 30 30 30 30 30 30 30 30 30 30 30		de	2 T -		1		1 1					
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	Lancer calcul	je i	0 0	31	2	4	6 8	10	12 14	16 18	20	22
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	Editoor curcui	d d										
Inregistrer résultats 40 30 30 30 40 30 30 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40		- P					0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
nregistrer résultats H'\LOGICIELS\SCIL Parcourir u fichier resultats.txt Enregistrer Quitter								Dires	liouvee	5		
H'\LOGICIELS\SCIL Parcourir u fichier resultats.bt Enregistrer Quitter		4	° T									
H'\LOGICIELS\SCIL Parcourir u fichier resultats.bt Enregistrer Quitter	Enregistrer résultats		_]								0.040	
u fichier resultats.txt			°			17 July 1						
u fichier resultats.txt	er H:\LOGICIELS\SCIL Parcourir	3	0-			, ,						
Quitter	· · · · · · · · · · · · · · · · · · ·	<u>a</u>	1									
Quitter	du fichier resultats.txt	o 2	5]									
Quitter	The second se	50	o-									
Quitter	Enregistrer					a ⁻ "a						
Quitter		21	5 -							· · ·		
G- Quitter			100						1.5	100		
Quitter		1	5								The state	
Quitter			6-				A DECEMBER OF			1 C C C	L) 💼 –	
	Ouitter		10									
			- <u> </u>	- 12-	17		2 N K			a 11 in	4 4 4	100

Use of Scilab for space mission analysis

Event co

-OX

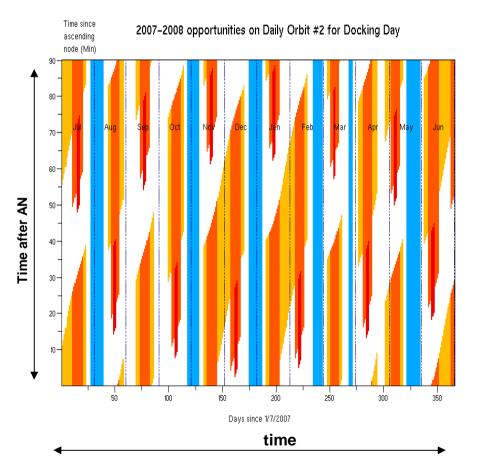


Example of Scilab application with GUI (2)

⇒Application for sun / orbit geometry analysis

⇔Computes:

- Sun elevation wrt orbit plane (beta angle)
- Eclipse duration

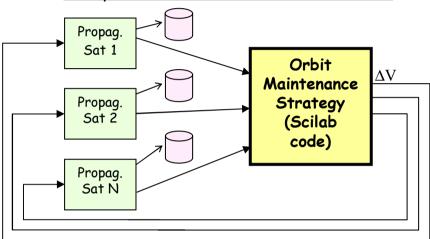


Scilabtec'09

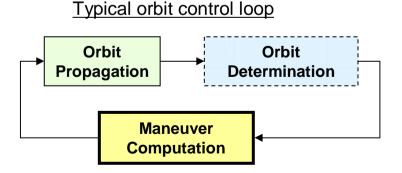
Operational mission analysis (ATV rendezvous opportunities)

- ⇒Numerous scripts were developed for the ATV mission analysis (orbital events analysis)
- Need to establish a firm base for the scripts used for this analysis
 Motivation for starting SpaceLab
- ⇒Scripts based on SpaceLab used to compute rendezvous opportunities over a period of time
- ⇒Due to operational complexity, constraints were quite changing
- It was decided to keep this application written in SciLab for flexibility purpose

CNES



Design and evaluation of new algorithms



Design and evaluation of orbit control algorithms

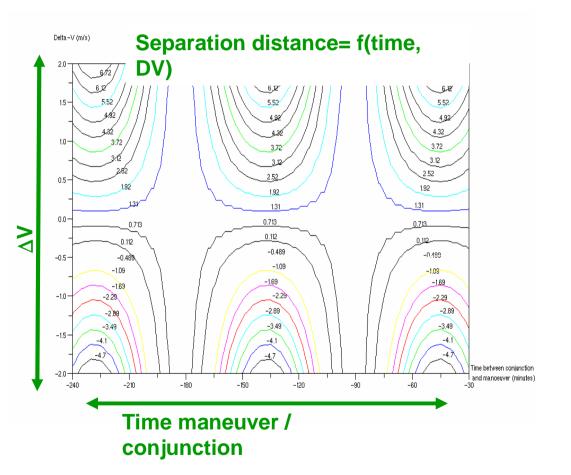
- ⇒Scilab has been used to design and validate (relative) orbit control algorithms
- Advantage of using Scilab: has offered enough flexibility to easily evaluate variants to the algorithms
- The simulator is run in non interactive mode, except exceptionally for debugging purposes
- The SciLab program is embedded in a larger software structure where several (validated) tools (i.e. binaries) exchange relevant information.
- ⇒CNES "SIMBAD" data exchange (socket based) library is used (written in C, Scilab API added)

Multiple satellite simulation environment

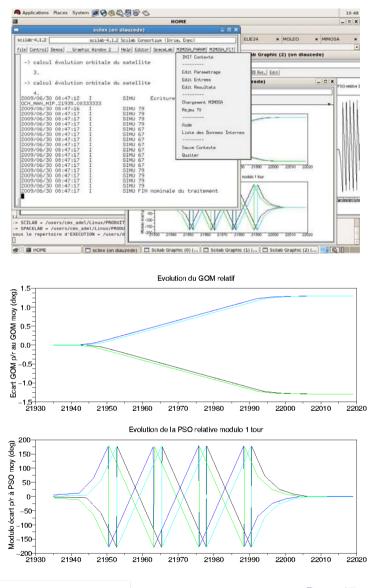
Scilabtec'09

USE OF SCILAB IN FLIGHT DYNAMICS OPERATIONAL SYSTEMS

2 examples


- ⇒ Debris conjunction analysis in ATV-CC Jules Verne
- ⇒ Operations for early orbit acquisition

Debris conjunction analysis in ATV-CC Flight dynamics


- ⇒Script installed in ATV-Control Center for Jules Verne
- This script works in conjunction with other operation software and is used for situation analysis and investigation
- Computes the efficiency of an avoiding maneuver as a function of time before the conjunction and the size of the maneuver
- ⇒Used to create "dynamical abaci"
- ⇒Not an operational software
- ⇒The solution is simulated with operational software

Operations for early orbit acquisition

- ⇒ Software used for operations (orbit acquisition of a cluster of 4 satellites)
- ⇒ About 40 scripts, 120 functions, 5000 lines of code (including comments)
- Computes the orbit maneuver strategy from injection by launcher to beginning of operational phase
- ⇒ Interfaces added to access the control center data (non Scilab GUI means used)
- Calculations activated by simple menus (no command-line nominally needed)
- ⇒ But access to low level functions and algorithms possible, if (really) required.

Some difficulties

⇒Computing time

• Avoiding loops is sometimes difficult (for orbit simulation for instance)

⇒Working with vectors

- Sometimes increases complexity of development
- Readability is difficult
 - →Improved with the use of functions
 - →Code has to be highly commented

⇒Scilab 5.x not available for Unix OS

⇒Link with FORTRAN 90

- Requires interface functions
- Programs must be compiled for various OS
- Difficulty to re-use existing FORTRAN libraries

⇒Scilab is widely used within the CNES flight dynamics departments

The mission analysis toolkit which is used for advanced studies is growing based (in particular) on:

- Scilab libraries (CelestLab, Skitos)
- Scilab specialized applications (MMI, associated toolbox)

A first version of CelestLab will be delivered as a SciLab external associated module. CelestLab provides functions for mission / flight dynamics analysis on:

- Orbit propagation,
- Orbit geometry,
- Reference frames and models,
- etc...