

Functional answer from the Collaviz project

Ian GRIMSTEAD, UNIVERSITY OF CARDIFF
& Laurent ANNE, DISTENE

Remote Visualization: Why?

- Why not just use your local machine?
 - If the datasets are small, that's great! But that's not the case anymore.
 - No additional hardware costs, very convenient
- What if you are running a large simulation?
 - Will it take too long to download the data?
 - Can you maintain an up-to-date local copy?
 - Can your local machine cope with the data?
 - Have you got software to display the data?
- If any of the above answers are "No!"...
 - You need remote visualization!
 © Collaviz 2009 2012 All Rights Reserved

Remote Visualization: Advantages

- Now the "hard" work is carried out on appropriate hardware
 - Remote large compute cluster?
 - Or, data is sent to remote rendering cluster

- Only the required view is transmitted
 - Raw data remains on cluster
 - Latest view of data

Remote Collaboration: Why?

- How many people can share a device?
 - A monitor is good for (say) 5 people
 - Large display: 20?

- One issue is also mobility:
 - People do not like traveling to use a computer
 - A long walk? A bus ride away? No thank you...
- What if the other participants are far away?
 - Different city? Different country?
- You need to work collaboratively remotely

Remote Collaboration: Advantages

- Multiple people can view and interact with the same dataset
 - Simultaneously
 - Enables discussion and evaluation
- Multiple people can use different viewpoints
 - Not possible when sharing a display
 - Experts with different specialties can view the data they need

Remote Visualization and Collaboration: Issues?

- This all sounds wonderful...
 - ...are there any problems?
- Yes standards
 - There are too many standards (!)
- Need a simple way of getting remote visualization to work
 - Networks constraints
 - Firewalls block traffic
 - Every site has different policies on traffic
 - Different client platforms required

Remote Visualization and Collaboration: Solutions

- Ideal approach: open standards to visualization
 - Web3D for data
 - Progressive encoding
 - Ontologies to describe content
 - Use web services to access remote services
 - Use http/https passes through firewalls
- Any existing application can then be wrapped with a web service

Remote Visualization and Collaboration: Solutions

- Web3D + Web Services?
 - Cardiff carried out research into this area
- Resource Aware Visualization Environment
- RAVE

Resource-Aware Visualization Environment

- UDDI discovery of distributed servers
- "Data service" hosted data
- "Render service" rendered data remotely
- Clients connect to direct to data service
- Or via render service if client can't cope (mobile)
- Import of data, then non-standard data flow to client

Remote Visualization and Collaboration: Solutions

Collaviz?

- RAVE was limited to the "Render" aspect of the traditional Filter-Map-Render pipeline
- Collaviz extends this to work with all aspects of the pipeline
- Filter, Map, Render are web services
- Remote data source is a web service
- Also has support for streaming data

What is Collaviz?

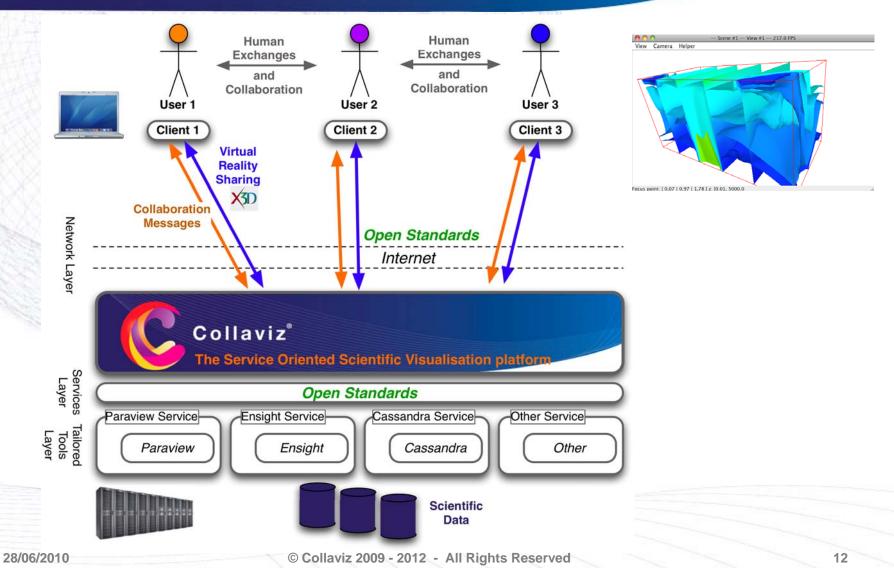
- The Collaviz program begun in January 2009 to answer those questions
 - Community building approach
 - Started with a €4M funding (€2M from ANR, half from other partners)
 - Open Source initiative: open to contributions...
- Prototypes and user return on experiments will be available in December 2011

Collaviz: Advantages

- Collaviz improves on existing techniques:
 - Full open pipeline to enable 3rd party services
 - Uses http/https to simplify remote access
 - Streaming support
 - Cross-platform support
 - Using existing standards
 - Synchronous & asynchronous collaboration

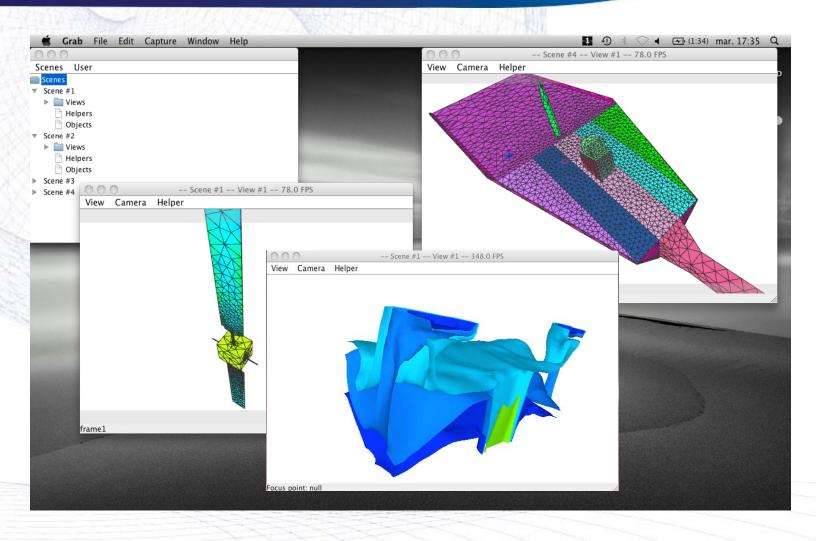
– ...

 The extensibility of Collaviz will make it survive after the end of the project



Collaviz technical answer

- Based on open standards:
 - Data formats, API, service container layer (e.g. web services),
 communication layer (SOAP...), virtual reality formats (e.g. X3D)
- Sharing the results as "virtual reality" scenes
 - Scientific datasets are processed on remote servers
 - 3D processing outputs are exported as X3D scenes
 - The X3D is shared by all clients
- Collaviz is not another post-processing engine. It's a middleware layer to expose reference/legacy tools as services.
 - We provide a full set of capabilities through the network!


The open architecture

Forum TER@TEC, 16 juin 2010

First views of Collaviz

We are currently building an OPEN Community...

So join us!

Coordinator: <u>alban.schmutz@oxalya.com</u>