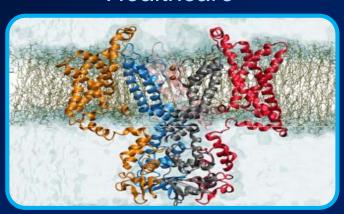
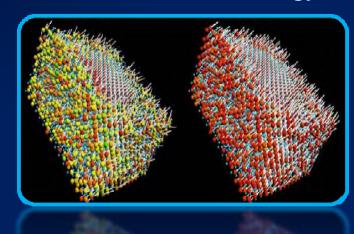

MIC, Intel and Rearchitecting for Exascale

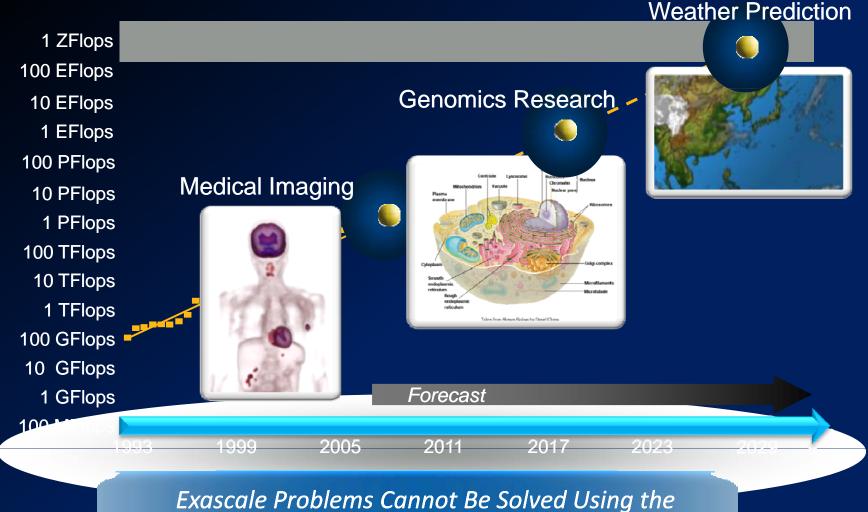
John Hengeveld Director of Marketing, HPC Evangelist Intel Data Center Group


Dr. Jean-Laurent Philippe, PhD
Technical Sales Manager & Exascale Technical
Lead
Intel EMEA Sales and Marketing Group

Exascale Answers Mankind's Challenges In...


Weather / Climate

Healthcare



New Forms of Energy

An Insatiable Need For Computing

Exascale Problems Cannot Be Solved Using the Computing Power Available Today

Intel Commitment To Exascale

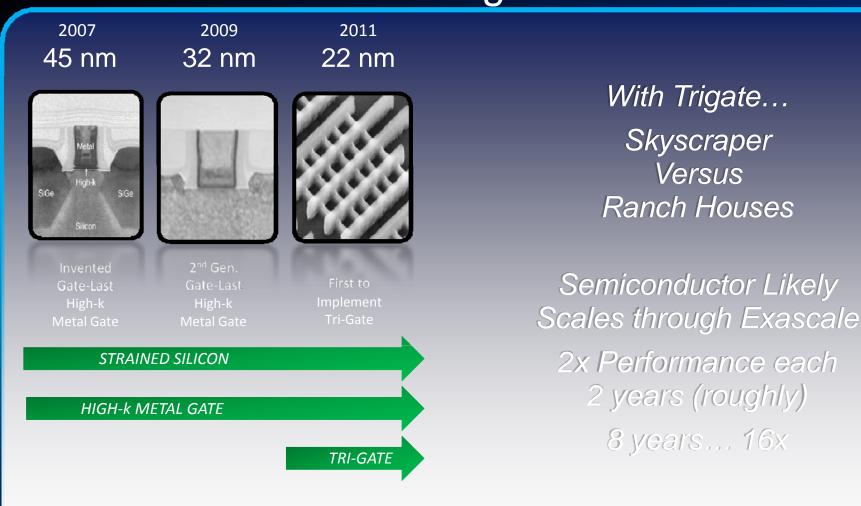
Programming Parallelism

Extreme Scalability

Intel Exascale Commitment:

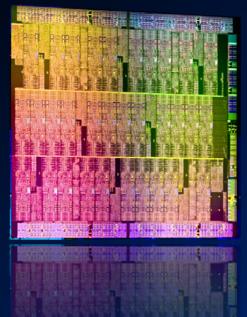
>100X Performance Of Today At
Only 2X The Power of Today's #1 System
Scaling Today's Software Model

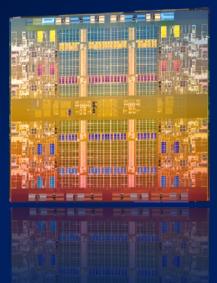
What will Exascale Workloads Look like?


- Massively Parallel (assume 100x threads)
 - Assume low growth to total HPC SW talent (maybe up 50%)
 100x threads / 1.5x engineers = 66x todays threads per head
 - SW methodology must absorb this productivity requirement
- Memory Intensive some will be... some will not be
 - What Bytes per flop ratio is sufficient?
 - The cache debate is in full swing.
 - Alternative memory architectures?

Process Technology: First 16x of the 100x – 6x to go....

Breakthroughs Required to Get There


	Delivered Performance in 8 years	Issue
Moores Law	16x	
Increased Node Scaling	(1.5x?)	Interconnect Performance Scales?
HW architecture – Performance per Watt improvement	5x?	Memory Performance Scales? Storage Performance Scales?
SW Complexity	Probably increases 100x	Methodology gap?



Many Core and Multi-Core (~4x)

Many Integrated Core Aubrey Isle at 1-1.2 GHz

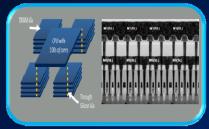
Multi-core Intel® Xeon® processor at 2.26-3.5 GHz

Die Size not to scale

In Intel® MIC architecture, each core is smaller, has lower power limit, has lower single thread performance, but higher aggregate performance

Many core relies on a high degree of parallelism to compensate for the lower speed of each individual core

Intel Labs & HPC (lots of other Issues)


Strong Research Partnerships

World Class Research in HPC

Memory Stacking & Technologies

Silicon Photonics

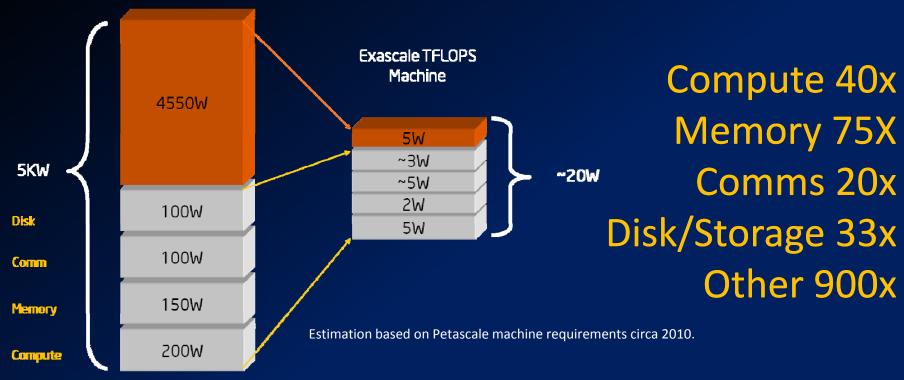
Security

Government

Programmability

Interconnect Technologies

Power Reduction



Delivering Breakthrough
Technologies to Fuel Innovation

Exascale Requirements

Petascale Machine of 2010: TFLOP of Compute

Visceral Focus on System Power Efficiency Improvement

Aubrey Isle Co-Processor Architecture

Multiple Fully Functional x86 cores

- In-order, short pipeline
- Multi-thread support

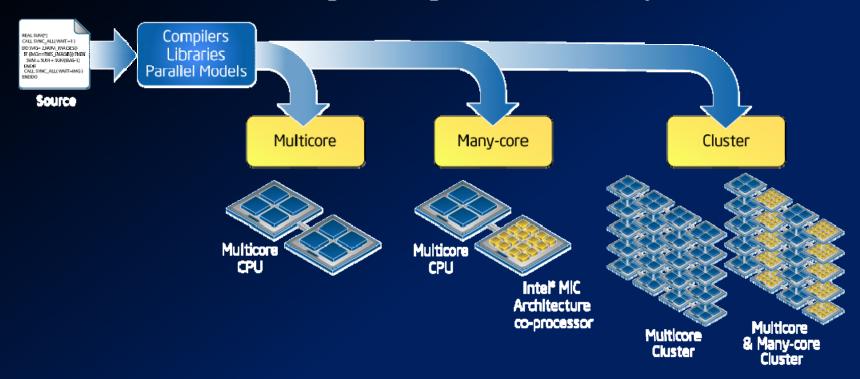
16-wide vector units (512b)

Extended instruction set

Fully coherent caches

1024-bit ring bus GDDR5 memory

Supports virtual memory

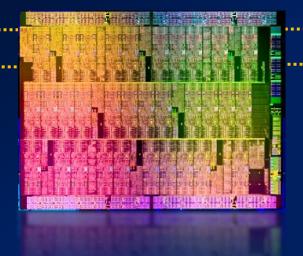

Standard Intel Architecture Programming and Memory Model

For illustration only.

Future options subject to change without notice.

Scaling Programmability

One Programming Model Democratizes Usage Avoid Costly Detours


Knights Corner (22nm MIC product) Intel® Many Integrated Core (Intel® MIC) Architecture

Delivered Performance

Launching on 22nm with >50 cores to provide outstanding performance for HPC users

Performance Density

The compute density associated with specialty accelerators for parallel workloads

Programmability

The many benefits of broad Intel CPU programming models, techniques, and familiar x86 developer tools

A Step Forward In Dealing With Efficient Performance & Programmability

MIC On Track: ISC Demonstrations¹

Hybrid LU Factorizarion

Leverages compute power of both Intel® Xeon® CPUs and Intel® MIC Delivers optimal performance by dynamically balancing large and small matrix

Computations between Intel® Xeon® and Intel® MIC

Hybrid Computing – SGEMM with Intel® MKL

High performing SGEMM with just 18 lines of code – common between Intel® Xeon® CPUs and Knights Ferry

Uses Intel® MKL in current version of Alpha stack/tools on Knights Ferry

7.4 TFLOP SGEMM in a node

Simultaneous execution of SGEMM on 8 Knights Ferry cards to deliver 7.4 TFLOPS in 1 4U server

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Source: Intel measured results as of March 2011. See backup for details.

For more information go to http://www.intel.com/performance

¹ Refer to backup material for system configurations

Up to 772 GFLOP

1+ TFLOP

7.4 TFLOP

Optimized MIC Software Development Platform Performance

MIC Partners at International Supercomputing 2011

Showcasing Applications

JÜLICH FORSCHUNGSZENTRUM

Showcasing
Platforms with
Knights Ferry

*Other names and brands may be claimed as the property of others.

Preface

- Programming models are the key to harness the computational power of massively parallel devices.
- Obviously, Intel has realized this trend and substantially supports open standards and invests in innovative programming models.
- LRZ and TUM are using Intel hard- and software for many years and know the tool chain by heart.
- We expect: A hardware product that delivers good performance (and energy-efficiency) without loosing programmability.

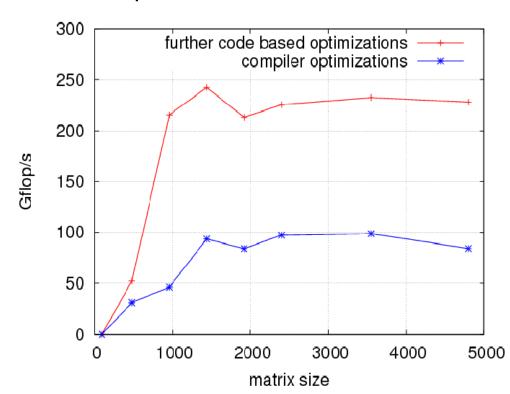
Advantages of the MIC Architecture

- Is a standard x86 architecture!
- Allows many different parallel programming models like OpenMP, MPI and Intel Cilk!
- Offers standard math-libraries like Intel MKL!
- Supports whole Intel tool chain, e.g. Compiler & Debugger!

Writing MIC-accelerated code with minimal effort and great performance

Workloads under Investigation

- Euroben Kernels (7 dwarfs of HPC)
- Data Mining
- TifaMMy Matrix Operations (Demo at ISC'11!)
- Further Linear Algebra and Simulation Codes


Euroben Kernels

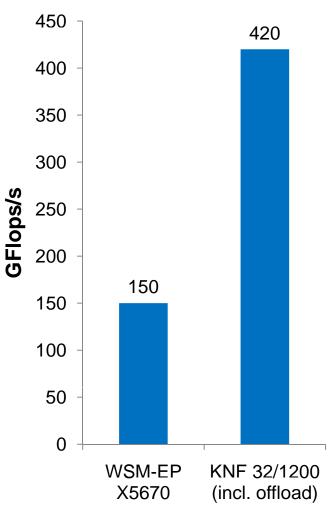
 Selected micro-benchmarks used in PRACE for the evaluation of accelerator hardware & new languages:

http://www.prace-project.eu/documents/public-deliverables/d6-6.pdf

Example: mod2am: dense matrix-matrix multiplication (MxM)

Performance evaluation of mod2am on KNF with 30 cores @1050 MHz using Intel's Offload Compiler, single precision, data transfer times excluded

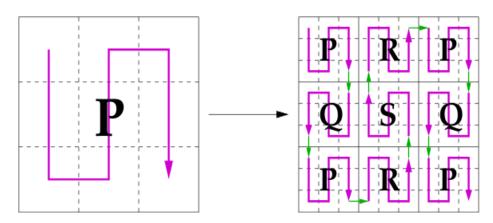
Evaluating the Intel MIC Architecture, Prof. A. Bode, LRZ June 2011



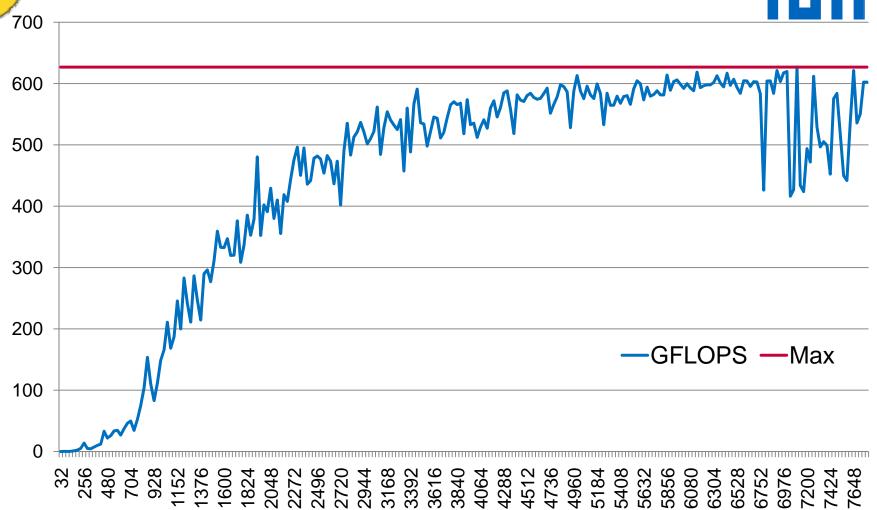
Data Mining with Adaptive Sparse Grids

- Machine learning algorithm
- Learning function from a training dataset
- Important workload for classification and regression of huge datasets

- > First version within a few hours
- Optimized version took 2 days



TifaMMy – Idea and Application



- TifaMMy: self-adaptive and cache-oblivious framework for matrix operations optimized on fat x86 cores
- This is done by nested recursions and vectorized kernels
 - On MIC, only the kernels were changed, MIC's x86 cores are able to tackle nested recursions!
- Parallelization scheme employing OpenMP can be reused
- > Having SSE kernels, bringing code to MIC is nearly for free

TifaMMy – Performance Matrix Multiplication

Matrix Size

Advantages of the MIC Architecture

- Is a standard x86 architecture!
- Allows many different parallel programming models like OpenMP, MPI and Intel Cilk!
- Offers standard math-libraries like Intel MKL!
- Supports whole Intel tool chain, e.g. Compiler & Debugger!
 - Pre-release MIC-accelerated code for a typical scientific workload (e.g. Data Mining, TifaMMy) can reach up to 50% of peak performance!

How Intel® Delivers its Commitments:


Intel Exascale Commitment: >100X Performance Of Today At Only 2X The Power Of Today's #1 Scaling Today's Software Model

Committed roadmap now and in the future

Flexible, open and scalable programming models

Collaborating with others to ensure the exascale future

