

3 petaflop systems: TERA 100, CURIE & IFERC

1.25 PetaFlops

140 000+ Xeon cores SMP nodes

- **256** TB memory
- 30 PB disk storage
- 500 GB/s IO throughput
- 580 m² footprint

>1.6 PetaFlops

90 000+ Xeon cores +SMP + GPU

- 360 TB memory
- 10 PB disk storage
- 250 GB/s IO throughput
- 200 m² footprint

>1.4 PetaFlops

70 000+ Xeon cores

- **280** TB memory
- 15 PB disk storage
- 120 GB/s IO throughput
- 200 m² footprint

~.5 PB/s memory total BW

Tera, Peta, Exa, Zetta, ... Flops / Scale

Industrial challenges in the Oil & Gas industry: Depth Imaging roadmap

source: exascale.org

HPC Applications

Electro-Magnetics

Computational Chemistry **Quantum Mechanics**

Computational Chemistry Computational Biology **Molecular Dynamics**

Structural Mechanics Implicit

Structural Mechanics **Explicit**

Computational Fluid **Dynamics**

A wide range of Domains and Applications

Climate / Weather Ocean Simulation

Seismic Processing

Data Analytics

Reservoir Simulation

Rendering / Ray Tracing

Exascale Technology Challenges

- Processing Element : architecture and frequency
 - Multi/Many-cores, Accelerators, ...
- Memory Capacity & BW → MCM, 3D Packaging ?
 - Feeding enough Bytes to the FP engines, fast enough
- Network bandwidth, latency, topology and routing
 - Optical connections/cables, fewer hops, compact packaging
- I/O scalability and flexibility
 - XXXLarge datasets + faster computations → data explosion
- System-level resiliency and reliability
 - Month(s) long jobs getting through HW failures
- Power and Cooling
 - Fewer & less consuming components, improved PUE
- Price ?

HPC requirements, constraints and technology evolution

2011's CPU-GPU Hybrid Architecture

GPU Accélérators and Applications

	GPU / CPU ratio
GFlops (DP)	7
Memory BW	4.5
consumption	2
Memory Size	1/8

Applications suited for GPUs:

- Small source code (kernels)
- Limited datasets or very good locality
- (Single Precision)
- Little communications
- Cuda or OpenCL or HMPP

- Graphics Rendering
- Seismic Imaging
- Molecular Dynamics, Astrophysics
- Financial Simulations
- Structure Analysis, Electromagnetism
- Genomics
- Weather / Climate / Oceanography
- ... and more...

Hybrid CPU-GPU architecture evolutionS

InfiniBand for Communications and IO

5,832 nodes fully non-blocking

System reliability and Applications runtime

Cooling & Power Usage Effectiveness (PUE)

12

HPC systems and future technologies:

- HPC Applications stress all aspects of a system (seldom flops)
- Processing Units (PUs) cross-over between CPUs & GPUs CPUs ease of use + GPUs performance and power efficiency
- Balanced Design RequiredMemory BW & latency, Interconnect, local IO
- Optimal data centers cooling
- Improved nodes energy efficiency Accelerators, better integration (NIC in PU)
- Resilient but Affordable
- Software, Software, ...
 Administration, Monitoring, Development, Runtime

More than Flops!

bullx

instruments for innovation

