

HSM for Lustre: Data hierarchization for Parallel File Systems

Guy Chesnot – gchesnot@sgi.com

Introduction: Parallel File Systems advantages

Large data capacity: Issues and goals

Two answers: user managed, automated

Introduction: Parallel File Systems advantages

Large data capacity: Issues and goals

Two answers: user managed, automated

Parallel File System (PFS)

| CLIENT |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CLIENT |

PFS Advantages

- Performance
 - Data transport
 - Bandwidth
 - Not for latency
 - Metadata: not yet
- Scalability
 - Bandwidth grows ~ linearly with capacity
- Costs

PFS Advantages for HPC

Suits HPC requirements

High-speed data handling

More and more data

Introduction: Parallel File Systems advantages

Large data capacity: Issues and goals

Two answers: user managed, automated

The flood

Tens of thousands clients

So many files

So many file sizes

Issues

- Capacity increase
- Data
 - Backup /
 - Short-mid-long term conservation /
 - Archiving
 - ... whatever you name it
- Cost driven policies

First level issues

- Plain backup is a dead end
- Because of data volumes
- Because of transaction numbers
- Because of disk technology
 - Density, doubling every three years (average)
 - Hardly better access time (30% in 10 years)

=> HSM workflow

Introduction: Parallel File Systems advantages

Large data capacity: Issues and goals

Two answers: user managed, automated

« Simple » answer

- Low cost device: tape used as repository to duplicate PFS data
- User managed data movement
- Two (at least) levels hierarchy
 - First level: PFS disk storage
 - No management policy
 - Second and upper level: other disk space + tapes + remote system + etc.
 - Files metadata automatically ingested by HSM

User managed: NASA Ames

- Goals
 - Integration of Lustre & DMF (SGI HSM) as soon as possible
 - Performance:
 - 200 GB/s with Lustre
 - 10% (20 GB/s) to/from tapes
- Operational for a few months now
- Disk space management
 - No need of an HSM policy
 - NASA directs the data movement
- "The biggest thing about any DLM system is reliability, reliability, reliability. You don't want to lose any data. That's really what drove us to implement DMF."
 - Alan Powers, High End Computing Lead, NAS

Complex answer

Low cost device: tape used as repository to duplicate PFS data

- Automated movements between hierarchy levels
- Two (at least) levels hierarchy: PFS disks + xxx
- HSM policy managing
 - PFS policy in charge of 1st level: PFS disks
 - HSM policy in charge of 2nd and other levels: disks, tapes, etc.

Automated: prospective customers

 Mostly all DMF customers wishing to protect all / part of their Lustre (or others POSIX) name space

 French Lustre (or others) & DMF customers ... and other countries too

Introduction: Parallel File Systems advantages

Large data capacity: Issues and goals

Two answers: user managed, automated

Main issue

Performance

To / from tapes

Bandwidth

Tape latency cannot be bypassed

Three levels architecture

PFS disks – HSM disks – HSM tapes

- Files copied from primary filesystem disks to HSM disks
 - Migrated & freed immediately
 - Later recalled, copied to primary, freed again
- HSM policy implemented by PFS

Three levels architecture (cont.)

Two levels architecture

- Direct-to-tape
 - Data moved directly from primary filesystem to
 - Tape or Disk or remote system
 - HSM filesystem used only as a namespace
 - Low capacity & bandwidth requirements
 - Primary filesystem (PFS disks) can be any POSIX filesystem
- Direct-from-tape
 - copy to non-HSM native filesystem
- Available with SGI Data Migration Facility, DMF

Performance

Parallelism inside HSM: disks, tapes

- Parallelized HSM
 - Numerous data movers

Performance: tape bandwidth

Tape drive scheduling

- Library
- Robot
- Tape

load balancing

Performance: tape bandwidth (cont.)

- Rules for tape drives scheduling
- Select the least used tape drive, with some constraints
 - Use same robot as the tape cartridge
 - Use same bay as the tape cartridge to avoid unnecessary cartridge movement
- Per data mover
 - Select port with greatest remaining bandwidth
- Globally
 - Select data mover with the most remaining bandwidth

Performance: PFS MDS

PFS MDS in charge of HSM policy

Too much load

- Future?
 - Split MDS's
 - Dedicated MDS for HSM managed files
 - => multi level metadata

Concluding remark: Savings!

- Low acquisition cost
 - Tape cassettes (& tape drives if not enough bandwidth)
 - A few data movers: plain small x86 servers
 - HSM license

- Few admin
 - No backup pain
 - Less users' complains, because they lost data.

