
Paving the Road Ahead for
Software Development in HPC

David Lecomber
Allinea Software
david@allinea.com

• Our mission: to make HPC software

development fast, simple and successful

‒ A modern integrated environment for HPC

developers

‒ Scalable tools for any scale of system

• Supporting the lifecycle of application

development and improvement

‒ Allinea DDT : Productively debug code

‒ Allinea MAP : Enhance application performance

• Designed for productivity

‒ Consistent integrated easy to use tools

‒ Enables effective use of HPC resources and expertise

Allinea Software

Major Supercomputing Centers

Inexorable March of Scale

0
5000000

10000000
15000000
20000000
25000000

Total Cores in Top 500

• How do we define “HPC” today?

– Top 500 place now requires ~6,000 cores

– Coprocessors and accelerators - 15-20% of real HPC machines

• “Build it and they will come”?

Some Software Challenges for the

Extreme

Algorithmic: Compilers are not enough!

• Restructure for SIMD threads and vectorization

• Fundamental changes: Do we really need FFTs here?

• Rediscover PRAM and 0-1 Sorting Networks(!)

Programmer Efficiency

• MPI alone is not sufficient: Hybrid required

• Performance trade-offs harder to understand

• Software bugs harder to fix

Tackling Software Challenges

epcc|cresta
Visual Identity Designs

CREST
Collaborative Research into Exascale Systemware,Tools and Applications

Applications

• Biomolecular systems

• Fusion energy

• Weather prediction

• Engineering

Software Environment

• Debugging

• Profiling

• Auto-tuning

Systemware

• Numerical libraries

• Pre/Postprocessing

• In-situ Visualization

• Heterogeneous programming

Three Challenges for tools

Scalability

• Speed and Simplification

Heterogeneity

• Accelerators and Coprocessors

Adoption

• Ease of Use and Education

Debugging in practice…

Run

Crash

Hypothesis
Insert print
statements

Compile

Optimization in practice…

Insert
timers

Run code

Analyse
result

Change
code

Exploding Parallelism

• 18,688 nodes

• 18,688 NVIDIA Kepler K20 GPUs

• 299,008 CPU cores

• 50,233,344 CUDA cores

Titan

• 16,000 nodes

• 48,000 Intel Xeon Phi

• 32,000 Ivy Bridge

• 3,120,000 cores

• 11,328,000 hardware threads

Tianhe-2

Do the workflows “work”?

• Powerful graphical debugger designed for :

‒ C/C++, Fortran, UPC, …

‒ MPI, OpenMP and mixed-mode code

‒ Accelerators and coprocessors

• Unified interface with Allinea MAP :

‒ One interface eliminates learning curve

‒ Spend more time on your results

• Slash your time to develop :

‒ Reproduces and triggers your bugs instantly

‒ Helps you easily understand where issues come from quickly

‒ Helps you to fix them as swiftly as possible

Allinea DDT

Fix software problems, fast

• Where did it happen?

‒ Allinea DDT leaps to source automatically

‒ Merges stacks from processes

and threads

• How did it happen?

‒ Some faults evident instantly from source

• Why did it happen?

‒ Real-time data comparison and consolidation

‒ Unique “Smart Highlighting” – colouring

differences and changes

‒ Sparklines comparing data across processes

‒ Force crashes to happen?

‒ Memory debugging makes many random

bugs appear every time

Allinea DDT: Scalable debugging by design

Example

HPC code fails on 98,304 cores

Random processes crashing

Printf? Which processes and where?

Too costly to repeat

Allinea DDT finds cause first time

• Parallel profiler designed for:

‒ C/C++, Fortran

‒ MPI code

‒ Multithreaded code

 Monitor the main threads for each process

‒ Accelerated codes:

 GPUs, Intel Xeon Phi

• Improve productivity :

‒ Helps you detect performance issues quickly and easily

‒ Tells you immediately where your time is spent in your source code

‒ Helps you to optimize your application efficiently

Allinea MAP

Increase application performance

Simplicity and Capability

Click and run profiling for HPC!

<5% runtime overhead

20Mb output files

No instrumentation needed

Run regularly – or in regression tests

Performance

Other

Threads

Vectorization

Optimizing for the Xeon Phi

But what matters?

Optimizing for the Xeon Phi

Is my code well-vectorized?

… maybe?

Optimizing for the Xeon Phi

Is my code well-vectorized?

… maybe?

Optimizing for the Xeon Phi

Is my code well-vectorized?

… maybe?

Not in this loop

(16.5% of total time)

Optimizing for the Xeon Phi

Non-obvious tradeoffs

Optimizing for the Xeon Phi

Non-obvious tradeoffs

Here a loop taking

55% of total runtime

isn’t vectorized at all

Taking the unvectorizable rand() out of the loop

allows the sqrt workload to be fully-vectorized –

reverse loop fusion!

Optimizing for the Xeon Phi

Non-obvious tradeoffs

Now the floating-

point workload is

fully-vectorized

But all the time is being spent in the random

number generation, so that’s what really needs to

be optimized

Optimizing for the Xeon Phi

Know your tools

Replace rand() with Intel’s vectorized version and re-fuse the loop

to retain temporal cache locality benefits

Optimizing for the Xeon Phi

The full picture

You need to see the full picture to spot these

tradeoffs – Allinea MAP shows you the way

• Print-style debugging cannot cope

• Performance is complex

• Many existing tools failing

• HPC experts are overloaded

HPC is beyond
the tipping point

for developers

• Tools enable software to exploit the hardware

• Scale does not have to be hard

• Scale does not have to be slow

Scalable systems
need scalable

tools

• Allinea DDT and Allinea MAP

• Proven Super-Petascale capable tools

• We understand what HPC developers need

Allinea is
providing the

solution

Scalable science needs development tools

Why tools matter to all of us in HPC…

“There is an average Ninja gap of 24x”, Intel

“I found a performance problem in just 60
seconds that I’ve been chasing for 3 weeks”

“I will show this to my Prof – so we don’t waste
any more time with Printf”

Three Challenges for tools

Scalability

• Speed and Simplification

Heterogeneity

• Accelerators and Coprocessors

Adoption

• Ease of Use and Education

