h"l"ll'llw'

allinea

Leaders In parallel software development tools

Paving the Road Ahead for
Software Development in HPC

David Lecomber
Allinea Software
david@allinea.com

www.allinea.com

Allinea Software

Our mission: to make HPC software
development fast, simple and successful

— A modern integrated environment for HPC
developers

— Scalable tools for any scale of system

allinea

environment

Supporting the lifecycle of application
development and improvement

— Allinea DDT : Productively debug code

— Allinea MAP : Enhance application performance llinea
\poT

Designed for productivity

— Consistent integrated easy to use tools

o)
— Enables effective use of HPC resources and expertise a I I l n Ea

www.allinea.com

Major Supercomputing Centers

arsity of California
, I Lawrence Livermore
A =
f National Laboratory S ™JIC

TECHNISCHE /5 ws Barcetons
UNIVERSITAT ° w Ty ONERA Supercomputing
DRESDEN !-ATOIOSNAIA?OIIA‘T% ’J J U L I C H a3 G E n CI A ((g:lg:elvg(:/onal de Supercomputacion
ET 1843 FORSCHUNGSZENTRUM EEREHRESAER
g & Science & Technology . :.'..-'.':'.'
g ICHEC CINECA gy > faciites Counc PCC| e pc
' \&\\\lnsh Cantra for High-End Computing r .. CY VR s S

o VEZEABRBRIARR

suslline dinl azals

/\ e N ;’.'-}.-l
NLCHLC @ﬁ%ﬁﬁﬁﬂg;ﬁﬁf%ﬂﬂ& KING ABDULAZIZ UNIVERSITY. ’
e IFERC

National Center for High-performance Computing

allinea

www.allinea.com

('i.pgnmll[jl

Saudi Aramco

Inexorable March of Scale

Total Cores in Top 500

25000000
20000000
15000000 ‘///,f"”’
10000000 ————
5000000 —
0 S I I I I I I I |
& & & & & & & & &
g ¢ ¢ & & & ¥ P @
> > A A A A A A A

How do we define “HPC” today?
— Top 500 place now requires ~6,000 cores
— Coprocessors and accelerators - 15-20% of real HPC machines

“Build it and they will come™?

allinea

www.allinea.com

Some Software Challenges for the
Extreme

Algorithmic: Compilers are not enough!

e Restructure for SIMD threads and vectorization
e Fundamental changes: Do we really need FFTs here?
e Rediscover PRAM and 0-1 Sorting Networks(!)

Programmer Efficiency

“2%%| o« MPI alone is not sufficient: Hybrid required
] ¢ Performance trade-offs harder to understand
_# 94 * Software bugs harder to fix

allln€a

www.allinea.com

Tackling Software Challenges

CRESTR

Collaborative Research into Exascale Systemware,Tools and Applications

Applications Software Environment Systemware

e Biomolecular systems e Debugging ¢ Numerical libraries

e Fusion energy e Profiling * Pre/Postprocessing

¢ Weather prediction e Auto-tuning ¢ In-situ Visualization

¢ Engineering e Heterogeneous programming

arinea

www.allinea.com

Three Challenges for tools

Scalability

)

e Speed and Simplification

Heterogeneity

e Accelerators and Coprocessors

Adoption

e Ease of Use and Education

allinea

www.allinea.com

Debugging in practice...

Insert print :
i
— allinea

www.allinea.com

Optimization in practice...

Insert
timers

allinea

www.allinea.com

Change
code

Analyse

result

Exploding Parallelism

Titan

e 18,688 nodes

e 18,688 NVIDIA Kepler K20 GPUs
e 299,008 CPU cores

e 50,233,344 CUDA cores

Tianhe-2

e 16,000 nodes

e 48,000 Intel Xeon Phi

e 32,000 Ivy Bridge

e 3,120,000 cores

e 11,328,000 hardware threads

Do the workflows “work”?

allinea

www.allinea.com

Allinea DDT
Fix software problems, fast

 Powerful graphical debugger designed for :
— C/C++, Fortran, UPC, ...

Run
Run and debug a program.

Attach
Attach to an already running program.

— MPI, OpenMP and mixed-mode code

— Accelerators and coprocessors

* Unified interface with Allinea MAP : -

— One interface eliminates learning curve

— Spend more time on your results

Select Tool:

BN Atlinea pDT Support Expires 2111-10-23
\ Allinea MAP Trial Licence (30 Second Time Limit) Buy Now

« Slash your time to develop :
— Reproduces and triggers your bugs instantly
— Helps you easily understand where issues come from quickly

— Helps you to fix them as swiftly as possible

allinea

www.allinea.com

Allinea DDT: Scalable debugging by design

« Wheredid it happen?

Allinea DDT leaps to source automatically

Merges stacks from processes
and threads

« How did it happen?

— Some faults evident instantly from source

« Why did it happen?

— Force crashes to happen?

Real-time data comparison and consolidation

Unique “Smart Highlighting” — colouring

differences and changes

Sparklines comparing data across processes

Memory debugging makes many random

bugs appear every time

BBy AT
2|Focus oncurent » Group Process Thvead [Step Thveads Together
1200 processes (0-1199) Paused 1200 Playing 0 Finished 0
Curently selected o]
® 77 amayf0 X | Locals | Curent
14 -
1 i=1n
doj=1m
do k=1, 3
dol =13
1 c(i, 1) = cd
b(i+ k-2, j+1-2) (k, 1)
end do @ Distributed Debugging
g -l 05 © Distributed Debugg
151 end do Processes 0-1199
18 nd do &
T Process stopped in convolute (amay{50: 147) with

% | npuyOupur | Breakports | Watchpoines Reason/Orge invaid pemnissions for mapped

object
Your program wil probably be teminated f you

s
Processes Funcbon | continue.

[You can use the stack controls to see what the
1200 M =mainf (anay$9077) process was doing at the time.
B TR < aweys show this window for sgnas

| ST)

Stacks (All)

Processes | Function

150120 Z_start

150120 5 libc_start_main

150120 Zmain

150120 2 pop (POP.f90:81)

150120 initialize_pop (initial f90:119)

150120 Zlinit_communicate (communicate f90:87)

150119] §--create_ccn_::ommunicator (communicate f80:300)

Locals Current Line(s) | CurreniShckI
ﬂ Curreni Line(s)

Variable Mames Value

L mype W"L 2724

l'lll”"

Example

‘ HPC code fails on 98,304 cores

‘ Random processes crashing

‘ Printf? Which processes and where?

‘ Too costly to repeat

‘ Allinea DDT finds cause first time

allinea

www.allinea.com

Allinea MAP
Increase application performance

Parallel profiler designed for:

Load Profile Data File
Load a profile data file
from a previous run.

A
MAP -

Remote Launch:
| off 2

— C/C++, Fortran
— MPI code
— Multithreaded code

Quit
= Monitor the main threads for each process

— Accelerated codes:
= GPUs, Intel Xeon Phi

Select Tool:

)\ Allinea DDT Support Expires 2111-10-23

Improve productivity :

— Helps you detect performance issues quickly and easily
— Tells you immediately where your time is spent in your source code

— Helps you to optimize your application efficiently

allinea

www.allinea.com

Simplicity and Capability

‘ Click and run profiling for HPC!

‘ <5% runtime overhead
;‘_ :j

M AP ‘ 20Mb output files

‘ No instrumentation needed

‘ Run regularly — or in regression tests

allinea

www.allinea.com

Optimizing for the Xeon Phi
But what matters?

Vectorization

Threads

Performance

allinea

www.allinea.com

Optimizing for the Xeon Phi
Is my code well-vectorized?

. : . remark: Loop was not vectorized:
.T(2431): (col. 7) remark: loop was not vectorized: not inner loop.

.f(993): (col. 13) remark: LOOP WAS VECTORIZED.

.f(992): (col. 10) remark: loop was not vectorized: not inner loop.

.T(991): (col. 7) remark: loop was not vectorized: not inner loop.

.f(243): (col. 7) remark: loop was not vectorized: existence of vector depende

mg.f(993): (col. 13) remark: LOOP WAS VECTORIZED.
mg.T(992): (col. 10) remark: loop was not vectorized: not inner loop.
mg.f(991): (col. 7) remark: loop was not vectorized: not inner loop.
mg.T(753): (col. 13) remark: loop was not vectorized: vectorization possible but
seems inefficient.
mg.T(762): (col. 13) remark: loop was not vectorized: vectorization possible but
seems inefficient.
.f(749): (col. 10) remark: loop was not vectorized: not inner loop.
mg.f(746): (col. 7) remark: loop was not vectorized: not inner loop.
mg.f(993): (col. 13) remark: LOOP WAS VECTORIZED.
mg.f(992): (col. 10) remark: loop was not vectorized: not inner loop.
mg.f(991): (col. 7) remark: loop was not vectorized: not inner loop.
mg.T(2255): (col. 16) remark: loop was not vectorized: existence of vector depen
dence.
.T(2254): (col. 13) remark: loop was not vectorized: not inner loop.
.f(2251): (col. 7) remark: loop was not vectorized: not inner loop.
.T(2433): (col. 13) remark: LOOP WAS VECTORIZED.
.f(2433): (col. 13) remark: loop was not vectorized: not inner loop.
.T(2432): (col. 10) remark: loop was not vectorized: not inner loop.
.T(2431): (col. 7) remark: loop was not vectorized: not inner loop.
.T(2433): (col. 13) remark: LOOP WAS VECTORIZED.
.T(2433): (col. 13) remark: loop was not vectorized: not inner Lloop.
.f(2432): (col. 10) remark: loop was not vectorized: not inner loop.
.T(2431): (col. 7) remark: loop was not vectorized: not inner Lloop.
.f(527): (col. 7) remark: loop was not vectorized: nonstandard loop is not a v
ectorization candidate.
mg.f(552): (col. 7) remark: loop was not vectorized: nonstandard loop is not a v
ectorization candidate.
mg.f(1150): (col. 7) remark: loop was not vectorized: loop was transformed to me
mset or memcpy.
mg.f(1150): (col. 7) remark: loop was not vectorized: loop was transformed to me
mset or memcpy.
mg.T(1645): (col. 7) remark: loop was not vectorized: loop was transformed to
mset or memcpy.

... maybe”?

allinea

www.allinea.com

Optimizing for the Xeon Phi
Is my code well-vectorized?

.fslow.map - Allinea MAP v4-1-BRANCH

File View Search Window Help

Profiled: slow_f on 8 processes Started: Thu Mar 14 14:03:16 2013 Runtime: 30s Time in MPI: 37% Hide Metrics...

Memory usage (M)

62 - 608 (17.9 avg)
222 - 223 (22.2 avg) o
MPI call duration (ms)
0 - 55679 {642.7 avg)
a - 0 { 0avg)
CPU memory access (%)
o - 50 (22avg)
(1] - 50 { I0avg)
CPU floating-point (%)
0 - 100 (35.6avg)
0 - 100 { 44avg)
CPU floating point vector (%) . Bty : !]]
0 - 100 (277 avg) . : : P T
0 - 10 (gava) . N _\gﬂ__’ L “—"\-_x_ s i | FhE =

14:03:31-14:03:36 (range 4.928s, 16.5% of total): Mean Memory usage 22.2 M; Mean MPI call duration 0.0 ms; Mean CPU memery access 10.4 %; Mean CPU ﬂoating—poi

F slow.fo0 X

101 nefficient 1
0 1=1,500
1) i=1,2000
BN L bhu i j=1,2000
J Xx=1
3. 0% AR 107 T ali, 1)=x1 |
| Input/Output | Project Files | Parallel Stack View |
Parallel Stack View ®
Total Time “ MPI Functien(s) on line Source Position
E|_5|0'|'|' program slow slow.fo0:1
=l stride call stride slow.f90:11

afi,j)=x*j slow.f90:107

89.0% 3
do j=1,2000 slow.f90:104

10.9%_ \iacasds i i bk, st b i i
<=0.1%

[

Allinea MAP v4-1-BRANCH 34a9cd1d0317 Jun 10 2013

Optimizing for the Xeon Phi
Is my code well-vectorized?

o = 50 { 10avag) P T s mm 7 el
CPU floating-point (%) i L] B - o B - & i

__._ .._- -. .."\"-\.P_ o - __-"_F - _.. . .- -_— - _. b=
0 - 100 (356avg) L oo ﬁ“‘mﬁ—hx_f e L TNy
(7] - 100 i 44 avg) - —— F T D - - - -— UL |
CPU floating point vector (%) == -~ — .o = - .o = - - S
-*' __-_'_“—u_n_\ - ._F.“'H.-'—_._,-\.._\\‘- -
0 - 100 (27.7avg) [: -— A e -

o - 10 i Davg) : - T T .
14:03:31-14:03:36 (range 4.928s, 16.5% of total): Mean Memory usage 22.2 M; Mean MPI call duration 0.0 ms; Mean CPU memory acce

do 1=1,500
o i=1,2000
do j=1,2000
x=1i

mEngn|

Not in this loop I TR——n

1 3

2. 0% I 107] ai,1)-x"3

(16.5% of total time)

Optimizing for the Xeon Phi
Non-obvious tradeoffs

: sqrtmax-fusion.map - Allinea MAP v4-1-BRANCH

File View Search Window Help

Profiled: sqrtmax-fusion on 4 processes Started: Mon Mar 11 13:20:53 2013 Runtime: 25 Time in MPI: 40% Hide Metrics...

Memory usage (M) =
54 - 1.7 (7.2avg)

MPI call duration (ms) B] —
o - 23 4o AN BIIBERRIILIEIL B EEEIEE RRER I IBIBIIEE HIENEER

CPU floating-point (%) - . o o I R — e -

0 - 100 (17.2avg) Nl —oy— UESSE.

CPU floating point vector (%)
o - 0 {00avg)

CPU integer vector (%)
o - 0 {00avg)

13:20:53-13:20:54 (range 1.671s): Mean Memory usage 7.2 M; Mean MPI call duration 0.4 ms; Mean CPU floating-point 17.2 %; Mean CPU floating point vector 0.0 %; Mean CPU inte| Reset

L sgrtmax-fusion.c X

/* £ill the input data with random numbers ourselves */

srand (Eime (NULL));

[v]

2.1% | . . - for(i = 0; i<subsize; it++)
54 {

34.2% ubjud ki, eluid . bk, 22 double x = rand();

19 8% 40 b o il b bttt 56 numbers[i] = sqgrt(x); ||
result = numbers[0];]
for(i = 1; i<subsize; i++)/{ —

' " A1 . fv—ar:w'i— < -.-u-—-er:'-"\ =4

Input/Output | Project Files | Parallel Stack View |

Parallel Stack View &
Total Time “~ MPI Function(s) on line Source Position E
= main int main{int argc, char *argw([]){ sqrtmax-fusion.c:9

34.2% ol bl dakemmbb whobidi & m b and, rand@plt> double x = rand{); sqrtmax-fusion.c:55

20.9% — = 20.9% [+ MPI Recv MPI_Recv{&result, 1, MPI_DCUBLE, i, 0, MPI_COMM_WORLD, &status); sqrtmax-fusion.c:36

19.4% 00w klal o m ool b b il : numbers[i] = sgrt (x); sgrimax-fusion

8.8% , Ltderw 5 ablm i1 1 8.8% MPI_Recv MPI_Recv (&subsize, 1, MPI_DOUBLE, 0, 0, MPI_COMM _WORLD, &status); sqrtmax-fusion.c:48
R L v kb o1 5.9% MPI_Recv MPI_Recv (numbers, subsize, MPI_DOUBLE, 0, 0, MPI_COMM WORLD, sstatus); sqrtmax-fusion.c:49
41%, v v s im om o ams 4.1% # MPI_Send MPI_Send { {numbers+sIndex+ (subsize*(i-1))), subsize, MPI_DOUBLE, i, 0, MPI_COMM.. sqrtmax-fusion.c:33
7 AU L ifiresnlt < numberslill snrtmay-fusinn r-A1 2

Allinea MAP v4-1-BRANCH 34a9cd1d0317 jun 10 2013

Optimizing for the Xeon Phi
Non-obvious tradeoffs

CPU floating-point (%) il B S
0 - 100 (17.2 avg) - = [~ e —_""m

= Here a loop taking

CPU floating point vector (%)
0 - 0 (0.0avg)

55% of total runtime

CPU integer vector (%)

[] , []
° - ° (ooaw) Isn't vectorized at all
21 f* £ill the input data with randc
32 srand(time (NULL)) ;
2.1% | , , . 23 H for{i = 0; i<subsize; i++)
54 {
34 2% L e et e ik w s 7 double x = rand();
29 4% b n ol et 56 _ numbers[i] = sqrt(x);
result = numbers[0];

Taking the unvectorizable rand() out of the loop

allows the sgrt workload to be fully-vectorized —
reverse loop fusion!

Optimizing for the Xeon Phi
Non-obvious tradeoffs

CPU floating-point (%) 1
0 - 100 {10.5avg) —

CPU floating point vector (%) B =

o . 100 (05aw) | e B UL B B pomt workload is
CPU integer vector (%) fu”y_vectorlzed
0 - 0 {0.0avg)

3.0% . e . | 23 for{i = 0; i<subsize; it+t)

42 . 6% i Lumduih), adeumil iy, 54 numbers[i] = rand();

for(i = 0; i<subsize; i+4)
f':--s'IIJIJ-LIIIIIIIIlII TR 1 37 I numbers[i] = .SEIItI:f'J'JTﬂl:E'I.S-i_:I,'
S8 result = numbers[0];
R = fori{i = 1; i<subsize; i++1/{

But all the time is being spent in the random

number generation, so that's what really needs to
be optimized

Optimizing for the Xeon Phi
Know your tools

Random Number Function Vectorization

Submitted by Ronald W Green ... on Fri, 09/07/2012 - 16:31

Categories: Intel® Many Integrated Core Architecture , Vectorization |, Intel® C++ Compiler | Intel® Fortran Compiler ,
C/C++ | Fortran , Developers , Linux* , Advanced

Tags: Random Number Function Vectorization

Drand48 Vectorization in C/C++ Goodman, Steve9700.00000000000
Compiler Methodology for Intel® MIC Architecture

Vectorization Essentials, Random Number Function Vectorization

The Intel 13.0 Product Compiler now supports random number auto- vectorization of the drand48 family of
random number functions in C/C++ and RANF and Random_Number functions in Fortran. Vectorization is
supported through the Intel Short Vector Math Library (SVML).

Supported C/C++ Functions:
double drand48(void);

double erand48(unsigned short xsubi[3]);
long int lrand48(void);

lana int AarandAQ/uncionad chart woenlhi 274 -

Replace rand() with Intel's vectorized version and re-fuse the loop
to retain temporal cache locality benefits

Optimizing for the Xeon Phi
The full picture

/home/mark/Work/code/doc/tra

File View Search

ndow Help

Profiled: sqrtmax-vector on 4 processes Started: Mon Mar 11 12:17:19 2013 Runtime: 25 Time in MPI: 38% Hide Metrics...

Memory usage (M} =
54 - 17 (72avg)

MPI call duration (ms)
0 - 31 (05avg)

CPU floating-point (%)
0 - 100 (105avg)

CPU floating point vector (%)
0o - 100 (10.5avg)

CPU integer vector (%)
o - 0 (0.0avg)

12:17:19-12:17:20 (range 1.987s): Mean Memory usage 7.2 M; Mean MPI call duration 0.5 ms; Mean CPU floating-point 10.5 %; Mean CPU floating point vector 10.5 %; Mean CPU int| Reset

[v]

srand(time (NULL));
for(i = 0; i<subsize; i++)
numbers[i] = rand();

ize; i++) =
Sqrt (numbers[il);

5

7 - ' ' =) =
Input/Output | Project Files | Parallel Stack View |
Parallel Stack View ®
Total Time “~ MPI Function(s) on line Source Position
int main{int argc, char *argv(]){ sqrimax-workergen
42.6% i is i) o ik il nurbers[i] = rand(}; sqrtmax-workergen

23.1%.,
11.3%

QUELS 0, MPI_COMM_WORLD, &5

8.3% » 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &stat

48% |, . . | _ {numbers, subsize, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &)

3.0% P for(i i<subsize; i++)

26% , ., .4 . 4 if(result ¢ numbers[i]) sqrtmax-workergen
1.9% , W MPT_Send((numbsrs+sIndsxs (subsize* {i-1))), subsize, MPI_DOUBLE, i, 0, MPI_COMM W. sqrtmax-workergen.c:3
1.7% . N Y for(i = 1; i<subsize; i+4){ sqrtmax-workergen.
0.7%,]

Allinea MAP v4-1-BRANCH 34a9cd1d0317 Jun 10 2013

You need to see the full picture to spot these
tradeoffs — Allinea MAP shows you the way

Scalable science needs development tools

HPC is bey()nd * Print-style debugging cannot cope
- - . e Performance is complex
the tipping point

e Many existing tools failing

fOr develope I'S e HPC experts are overloaded

Scalable systems

e Tools enable software to exploit the hardware

need Sca|ab|e e Scale does not have to be hard
e Scale does not have to be slow
tools

Alllnea 1S ¢ Allinea DDT and Allinea MAP

prOViding the * Proven Super-Petascale capable tools
. ¢ We understand what HPC developers need
solution g

“AEEEE T ua
www.allinea.com

Why tools matter to all of us in HPC...

“There is an average Ninja gap of 24x”, Intel

“| found a performance problem in just 60
seconds that I've been chasing for 3 weeks”

“I will show this to my Prof — so we don’t waste
any more time with Printf”

allinea

www.allinea.com

Three Challenges for tools

Scalability

)

e Speed and Simplification

> Heterogeneity

e Accelerators and Coprocessors

Adoption

e Ease of Use and Education

)

allinea

www.allinea.com

