Isogeometric Analysis Application to Car Crash Simulation

S. Bouabdallah², C. Adam^{2,3}, M. Zarroug², H. Maitournam³

¹De Vinci Engineering Lab, École Supérieure d'Ingénieurs Léonard de Vinci ²Direction Scientifique et Technologies Futures, PSA Peugeot Citroën ³Laboratoire de Mécanique des Solides, École Polytechnique

Forum Teratec 2014 - July 2, 2014

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions O
Outline	9				

- 1 Introduction
 - Industrial context
 - Numerical locking

2 Timoshenko beams

- Pure bending problem
- Membrane and transverse shear locking
- 1D B-Spline reduced quadrature rules
- 3 Reissner-Mindlin plates
 - Pure bending problem
 - 2D B-Spline reduced quadrature rules
- A Reissner-Mindlin shells
 - Shell model
 - Shell obstacle course
- 5 Non-linear solid shells
 - Benchmark problems

6 Conclusions

Introduction ●○○○	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions O
Industr	ial context				

- Good predictive capability expected.
- Complete mesh size: \simeq 3 million elements.
- \Longrightarrow Explicit simulations performed on the whole model.
 - Stable time step: $\simeq 1~\mu s.$
 - 10 hours to simulate \simeq 130ms on 96 CPUs.
- \implies Excessive computational cost.
 - $\bullet \geq 90\%$ of the geometry meshed with linear Reissner-Mindlin shell elements.

Figure: Model size evolution

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions O
Industr	ial context				

- Geometry has proved to be very significant.
- Need to refine some components.
- \implies Stable time step greatly penalized.
 - Accurate and smooth geometry preferred for contact problems.
 - Large time used for preparing and meshing parts.

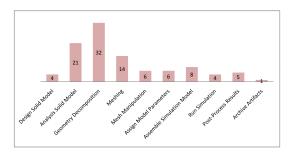


Figure: Estimation of relative time costs for model generation and analysis process

Introduction ○○●○	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions O
Industri	al context				

- \implies IsoGeometric Analysis for automobile crashworthiness.
 - Parametrized CAD geometry for optimisation process.
 - Analysis and Design share the same model.
 - Higher regularity between elements within a patch.

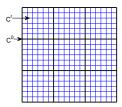
Figure: Numerical simulation process in isogeometric analysis.

Introduction ○○○●	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions O
Numer	ical locking	5			

- Fully integrated low order elements, based on Timoshenko/Mindlin hypothesis, present poor performances with thin beams, plates and shells.
- Transverse shear and membrane locking appear.
- Classical Lagrange-based reduced and selective integration rules do not remove these pathologies.
- \Longrightarrow Need to define B-Spline/NURBS-based integration schemes.

Framework:

- Multi-patch problems with uniform regularity within each patch.
- Quadratic and cubic polynomials, regularity r from 0 to p 1.



Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
0000	00000	000	000000	00	0

Introduction

- Industrial context
- Numerical locking

2 Timoshenko beams

- Pure bending problem
- Membrane and transverse shear locking
- 1D B-Spline reduced quadrature rules

3 Reissner-Mindlin plates

- Pure bending problem
- 2D B-Spline reduced quadrature rules

4 Reissner-Mindlin shells

- Shell model
- Shell obstacle course

5 Non-linear solid shells

Benchmark problems

6 Conclusions

Introduction	Timoshenko beams ●○○○○	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions O
Pure b	ending pro	blem			

- Thick curved beam of length L and radius R clamped at one end.
- Moment of inertia for a rectangular section: $I = \frac{bh^3}{12}$.
- Distributed loading moment proportional to the bending stiffness:

$$m(s) = EI\left(\frac{\pi}{2L}\right)^2 \sin\left(\frac{\pi}{2L}s\right).$$

 \implies Exact solution known, depends only of *L* and *R*:

$$u_n(s) = \frac{\frac{2L}{\pi}}{1-(\frac{2L}{\pi R})^2} \left(\cos\left(\frac{s}{R}\right) - \cos\left(\frac{\pi}{2L}s\right)\right).$$

- Exact membrane and shear strains are zero.
- Severe test for membrane and shear locking.

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
0000	0000	000	000000	00	
Memb	rane and tr	ansverse she	ear locking		

- One element with B-Splines of degree p from 1 to 5.
- Shear locking for slenderness ratio $L/h \gg 1$ and membrane locking for $L/h \gg R/L$.
- Both shear and membrane locking appear for all degrees p.

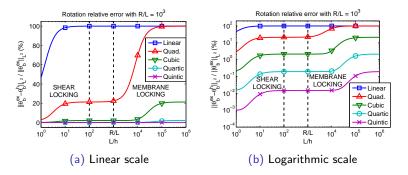
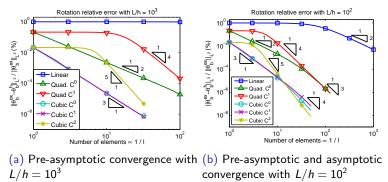


Figure: One element curved thick beam: rotation relative error in L^2 norm.

Introduction	Timoshenko beams ○○●○○	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions O
Transv	erse shear	locking			

- Different effects on convergence according to the couple (*p*,*r*).
- Degree 1: no pre-asymptotic convergence.
- Degree 2: slow pre-asymptotic convergence when C^0 and no pre-asymptotic convergence with few elements when C^1 .
- Spurious constraints strengthened by the high regularity.
- \implies Excessive bending stiffeness of the structure.



Introduction	Timoshenko beams ○○○●○	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions O
Mathe	matical fra	mework			

- Based on the work in FEA of [Prathap,93].
- Field-consistency paradigm in thick structural elements.
- Transverse shear strain in straight beam:

$$\gamma_s(s) = w_{,s}(s) - \theta(s).$$

• In the limit of an infinitely thin beam, the shear strain energy must vanish.

 \implies Different physical and spurious constraints are obtained according to the couple (p,r).

- Mathematical induction is performed adding elements one-by-one.
- New unknowns and conditions are numbered.
- An over-constrained linear system leads to numerical locking whereas an under-constrained system produces zero energy modes.

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
	00000				
1D B-9	Spline redu	ced quadrat	ure rules		

- Optimal selective reduced integration schemes adapted to high regularity basis functions.
- The higher the regularity is, the fewer Gauss points are needed.
- Shear and membrane locking are completely removed.
- Improved accuracy of curved beam B-Spline elements.

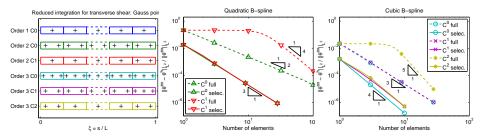


Figure: Rotation relative error in L^2 norm with full and selective reduced integrations.

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
0000	00000	000	000000	00	0

Introduction

- Industrial context
- Numerical locking

2 Timoshenko beams

- Pure bending problem
- Membrane and transverse shear locking
- 1D B-Spline reduced quadrature rules

3 Reissner-Mindlin plates

- Pure bending problem
- 2D B-Spline reduced quadrature rules

4 Reissner-Mindlin shells

- Shell model
- Shell obstacle course

5 Non-linear solid shells

Benchmark problems

6 Conclusions

Introduction	Timoshenko beams	Reissner-Mindlin plates ●○○	Reissner-Mindlin shells	Non-linear solid shells	Conclusions O
Pure b	ending pro	blem			

- Same behaviours as with beams.
- High regularity wanted for more accurate results with fewer control points.
- Need to unlock B-Splines especially when C^{p-1} regularity.
- Possibility to extend integration rules from beams to plates and shells.

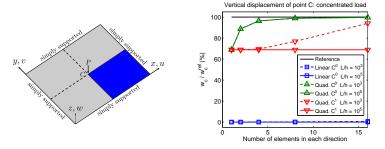


Figure: Central deflection of a simply supported plate ($L/h = 10^3$, 10^5).

Introduction	Timoshenko beams	Reissner-Mindlin plates ●○○	Reissner-Mindlin shells	Non-linear solid shells	Conclusions O
Pure b	ending pro	blem			

- Same behaviours as with beams.
- High regularity wanted for more accurate results with fewer control points.
- Need to unlock B-Splines especially when C^{p-1} regularity.
- Possibility to extend integration rules from beams to plates and shells.

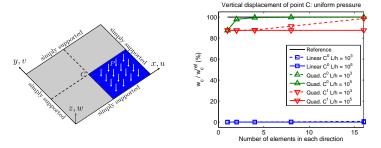


Figure: Central deflection of a simply supported plate ($L/h = 10^3$, 10^5).

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
		000			
2D B-9	Spline redu	ced quadrat	ure rules		

- Uni-dimensional B-Spline-based reduced quadrature rules extended to bi-dimensional rules by tensor product.
- The high regularity lowers the required number of Gauss points.
- Hourglass modes are suppressed using additional quadrature points in boundary elements, where the control points accumulate.

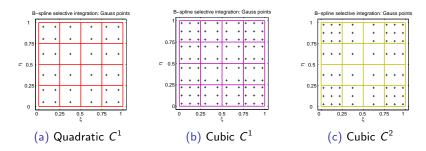


Figure: B-Spline selective integration quadrature rules and central deflection.

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
0000	00000	000	000000	00	
2D R_9	Spline redu	ced quadrat	ura rulas		

2D B-Spline reduced quadrature rules

- Resulting under-integrated elements are free from transverse shear locking.
- Numerical solutions independent of the thickness.
- Improved accuracy of plate isogeometric elements.
- No spurious zero energy modes.

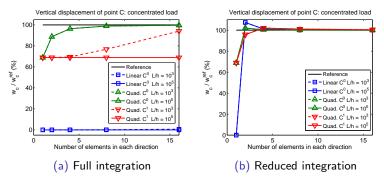


Figure: Central deflection of a simply supported plate ($L/h = 10^3$, 10^5).

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
0000	00000	000	000000	00	
2D R_9	Spline redu	ced quadrat	ura rulas		

2D B-Spline reduced quadrature rules

- Resulting under-integrated elements are free from transverse shear locking.
- Numerical solutions independent of the thickness.
- Improved accuracy of plate isogeometric elements.
- No spurious zero energy modes.

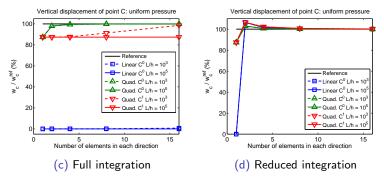


Figure: Central deflection of a simply supported plate ($L/h = 10^3$, 10^5).

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
0000	00000	000	000000	00	0

Introduction

- Industrial context
- Numerical locking

2 Timoshenko beams

- Pure bending problem
- Membrane and transverse shear locking
- 1D B-Spline reduced quadrature rules

3 Reissner-Mindlin plates

- Pure bending problem
- 2D B-Spline reduced quadrature rules

4 Reissner-Mindlin shells

- Shell model
- Shell obstacle course

5 Non-linear solid shells

Benchmark problems

6 Conclusions

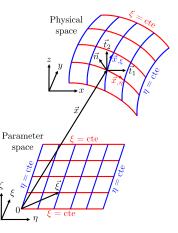
Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells ●○○○○○	Non-linear solid shells	Conclusions O
Shell n	nodel				

- Reissner-Mindlin shell model obtained from a degenerated three-dimensional model.
- First-order kinematic description through the thickness with transverse shear.
- Exact geometry of the shell defined by

$$\mathbf{x}(\boldsymbol{\xi}) = \sum_{A=1}^{nm} R_A(\xi, \eta) \mathbf{X}_A + \frac{h}{2} \zeta \mathbf{n}(\xi, \eta).$$

• Interpolated displacements described by

$$\mathbf{u}(oldsymbol{\xi}) = \sum_{A=1}^{nm} R_A \left(\mathbf{U}_A + rac{h}{2} \zeta oldsymbol{ heta}_A \wedge \mathbf{n}
ight).$$



Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
			00000		
Charao	terization	of the norm	al		

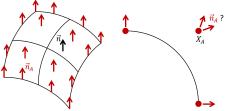
Characterization of the normal

- Several possibilities:
 - Exact normal:

$$\mathbf{n} = \frac{\mathbf{x}_{,\xi} \wedge \mathbf{x}_{,\eta}}{||\mathbf{x}_{,\xi} \wedge \mathbf{x}_{,\eta}||_2}$$

2 Collocated normal:

$$\mathbf{n}=\mathbf{n}_A\qquad\forall A\in[|1,nm|].$$



- a. \mathbf{n}_A defined by the orthogonal projection of the associated control point \mathbf{X}_A onto the mid-surface of the shell,
- b. \mathbf{n}_A defined by a uniform distribution of the shell normals in the parametric space,
- c. \mathbf{n}_A defined at the Greville abscissae in the parametric space.
- Exact normal formulation is incompatible with reduced integration.
- Collocation at Greville abscissae results in good compromise between accuracy and computation time.

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
			00000		
Shell o	hstacle cou	irse problem	IC .		

- Snell obstacle course problems
 - Evaluate time efficiency and accuracy of the proposed under-integrated elements.
 - Linear elasticity benchmark problems.
 - Bending dominated problems: transverse shear and membrane locking.

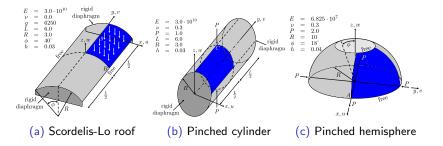


Figure: The shell obstacle course: problem descriptions and data.

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions O
•					

Accuracy

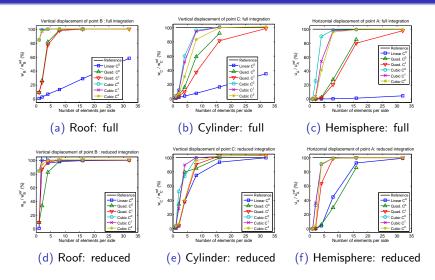


Figure: Shell obstacle course: displacement convergence

0000	00000	000	000000	00	0
Time					

Time efficiency

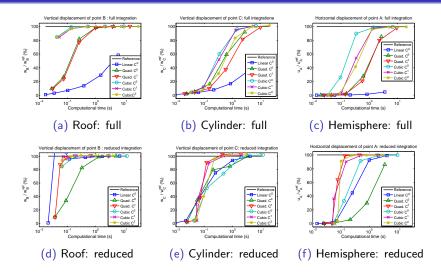


Figure: Shell obstacle course: displacement convergence

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
0000	00000	000	000000	00	
Tatal	aumhar of	Cauca paint	_		

Iotal number of Gauss points

• Lagrange-based quadrature:

 $n_{\mathsf{GP}}^{\mathsf{bending}} = \left(e\left(\left\lceil \frac{2p+1}{2} \right\rceil\right)\right)^2 \text{ and } n_{\mathsf{GP}}^{\mathsf{shear}} = \left(e\left(\left\lceil \frac{2p+1}{2} \right\rceil - 1\right)\right)^2.$

B-Spline-based quadrature:

$$n_{\text{GP}}^{\text{bending}} = n_{\text{GP}}^{\text{shear}} = \left(e\left(\left\lceil \frac{2p+1}{2} \right\rceil - 1 - r\right) + 2r\right)^2$$

- Computational effort depends on the difference *p r* when performing B-Spline-based reduced integration.
- Speed up factor greater than 5 (resp. 6) is reached with the under-integrated quadratic (resp. cubic) C^{p-1} elements.

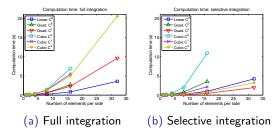


Figure: Computation time for the pinched cylinder problem.

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
0000	00000	000	000000	00	0

Introduction

- Industrial context
- Numerical locking

2 Timoshenko beams

- Pure bending problem
- Membrane and transverse shear locking
- 1D B-Spline reduced quadrature rules

3 Reissner-Mindlin plates

- Pure bending problem
- 2D B-Spline reduced quadrature rules

4 Reissner-Mindlin shells

- Shell model
- Shell obstacle course

5 Non-linear solid shells

Benchmark problems

6 Conclusions

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells ●○	Conclusions O
Bench	mark probl	ems			

- Solid-shell elements with one quadratic element in the thickness.
- Geometric non-linear elasticity benchmark problems.
- Bi-variate B-Spline-based quadrature rules applied.

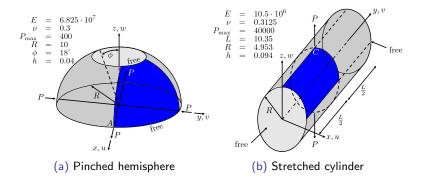


Figure: Geometric non-linear analysis of shells: problem descriptions and data.

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells ○●	Conclusions O
Accura	icy and tim	e efficiency			

- Bi-quadratic C^1 shape functions in the in-plane directions.
- Improved accuracy and time efficiency.
- Speed up factor of approximately 3.

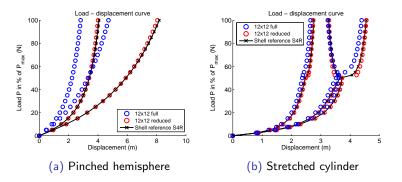


Figure: Displacement convergence with Total Lagrangian Formulation

Introduction	Timoshenko beams	Reissner-Mindlin plates	Reissner-Mindlin shells	Non-linear solid shells	Conclusions
0000	00000	000	000000	00	•
Conclus	sions				

- Severe numerical locking appear in quadratic and cubic C^{p-1} elements.
- \Longrightarrow Reduced integration to improve the performances of IG elements.
 - Classical reduced/selective quadrature rules remove numerical locking in *C*⁰ elements only.
 - Mathematical framework to define B-Spline-based reduced 1D quadrature rules.
 - Extension to 2D quadrature rules by tensor product.
- \Longrightarrow Efficient thick shell elements obtained as in FEA.
 - Improved accuracy and time efficiency.
 - Computational cost depends on the difference p r.