Energy modeling and optimization for HPC

A. Guermouche, J.-P. Halimi, A. Laurent, A. Mazouz, **B. Pradelle**, N. Triquenaux, W. Jalby

Energy at UVSQ

- As part of the PerfCloud project
 - 6 post-doc, PhD studdent, engineers
 - Formerly at Exascale Computing Research

Saving energy in HPC since 2011

Software solutions to save energy

How to save energy?

$$e = P_{avg} x t$$

How to save energy?

Reducing the execution time saves energy

Apply one of the many existing performance optimization techniques

How to save energy?

- Energy is also saved when saving power
 - ...while maintaining performance

What is DVFS?

- Dynamic Voltage and Frequency Scaling
- Manually control CPU frequency
 - Also impacts CPU voltage (hardware decides)
 - Low frequency = low power consumption

The lowest frequency is not always the most energy efficient one

Target HPC programs

- Use message-passing (MPI) for parallelization
- Focus on mostly-iterative programs
 - A few loops with many iterations
 - Stable communication/computation pattern

Task graph

```
for (t = 0; t < T; t++) {
if (rank == 0) {
  ... (T1)
  MPI_Send(1, ...)
  ... (T2)
  MPI_Recv(1, ...)
  ... (T3)
} else {
  ... (T4)
  MPI_Recv(0, ...)
  ... (T5)
  MPI_Send(0, ...)
  ... (T6)
```


DVFS and tasks

Processor

DVFS and tasks

Slack and energy

A slowdown in a process may propagate to others

- Slack in MPI = active polling
 - Very high power consumption

Slack and energy

We must avoid it when performing DVFS

Existing solutions

- Avoid slack in all cases
 - Reduce frequency during slack
 - Slow down tasks out of the critical path (= those with slack)

- Slow down whole iterations: Jitter
- Slow down individual tasks: Adagio
 - State of the art

Adagio

Adagio

Balanced codes

What if some tasks still benefit from a lower frequency?

Let's have a look...

Locally optimal frequency

- Every task has a locally optimal frequency
 - Minimizes the task energy consumption
 - Ignores the effects on other tasks

Which frequency is locally optimal? (for a given task)

→ how much energy a task consumes for each frequency?

Predicting e(T,f)

- Remember: $e(T,f) = P_{avg}(T,f) \times t(T,f)$
- Predicting t(T,f)
 - Let several loop iterations run
 - Reduce the frequency before every iteration

- Measure t(T,f) for every T and f
- Predicting P(T,f)
 - Cannot measure P(T,f)
 - Approximate it from offline measurements

Locally optimal frequency

Consequences

- Some slack may be introduced
- More energy wasted in slack than saved?
 - Complex to evaluate but avoid it in general

Slow down the task preceding the slack?

Speed up the task emitting the message?

Globally optimal frequency

- Processes request speedup to others
 - Separate MPI communicator
 - Asynchronous messages
 - Only a few messages exchanged

Then applied for the rest of the loop execution

Globally optimal frequency

FoREST-mn in short

- Offline profiling
- First iterations while measuring execution time
 - Frequency decreased
- Compute locally optimal frequencies
- Apply them for one iteration
- Converge toward globally optimal frequencies
- Apply the frequency schedule

Experiments

- 4 servers (Strasbourg)
 - 2x8 cores Intel SandyBridge
 - 64 processor cores
- NAS MPI 3.3.1
 - D class
 - EP excluded
- CPU energy
 - From Intel RAPL

CPU energy consumption

Execution time

Can we improve it?

- Predict e(T,f) more precisely
 - Use energy modeling (WIP)

Reduces overhead

- Prediction from tasks characteristics
 - Hardware counters

Current energy model

- Multiple linear regressions
- IPC
 - Accounts for most computations
- Memory traffic (RAM, L3, L2, L1)
- Regression from synthetic benchmarks
 - Various data sizes
 - Various number of active cores
 - Various frequencies

Current energy model

- Good prediction for simple loops (NR)
 - Evolves to support more complex programs
 - Current average error: 3%

- Ultimate goal: accuracy for complex workloads
 - In complex environment (multicore processors)
 - Integration into FoREST-mn

How good is FoREST-mn?

- How much energy can I save?
 - For my HPC program

- OutReach computes it
 - Based on execution traces
 - Maximal energy saving with DVFS
 - Ideal frequency sequence

OutReach

- Gather performance and energy traces
 - For every frequency
- Build the task graph from traces
- Express the optimization problem using LP
 - Solve it
 - Enhance it
 - Solve it

– ...

OutReach

- Gather performance and energy traces
 - For every frequency
- Build the task graph from traces
- Express the optimization problem using LP
 - Solve it
 - Enhance it
 - Solvait
 - ...

Conclusion

- FoREST-mn
 - Significant energy savings
 - Configurable tolerated slowdown
 - Multicore processors support

OutReach for complete evaluation

Predicting P(T,f)

- Remember: $P \approx P_{static} + \frac{1}{2} \times A \times C \times V^2 \times f$
- Assume: $P_{static} \approx k \times (\frac{1}{2} \times A \times C \times V^2 \times f)$
- Thus: $P \approx (k+1) \times (\frac{1}{2} \times A \times C \times V^2 \times f)$

$$\frac{P(f_1)}{P(f_2)} \approx \frac{(k_1+1)\times(\frac{1}{2}\times A\times C_1\times {V_1}^2\times f_1)}{(k_2+1)\times(\frac{1}{2}\times A\times C_2\times {V_2}^2\times f_2)} = \frac{(k_1+1)\times(\frac{1}{2}\times C_1\times {V_1}^2\times f_1)}{(k_2+1)\times(\frac{1}{2}\times C_2\times {V_2}^2\times f_2)}$$

Only architectural parameters remain

Typical energy profile

Typical energy profile

Typical energy profile

