
Andrés S. Charif Rubial

Ter@tec – 2nd July 2014

Andrés S. Charif-Rubial, William Jalby

Performance Evaluation

MAQAO Toolsuite

2 / 48

Outline

Andres S. CHARIF-RUBIAL

1. Introduction

2. PAMDA Methodology

3. MAQAO Framework

4. PerfEval: Profiling

5. CQA: Code Quality Analysis

6. DECAN: Differential Analysis

7. Success Stories

3 / 48

Introduction: Performance evaluation

 Characterize the performance of an application

 Complex multicore CPUs and memory systems

 How well does it behaves on a given machine

 Generally a multifaceted problem

 What are the issues (numerous but finite) ?

 Which one(s) dominates ?

 Maximizing the number of views

 => Need for specialized tools

 Several tools available

 Which one to use ?

 => Need for a methodology ?

4 / 48

Introduction: Existing tools and methodologies (1/2)

 ROI-oriented and global view:

 Lack of performance impact prediction:
=> Will fixing a given pathology pay off ?
=> No way to get a return on investment metric

 Global view:
=> what are the issues
=> which one has a high level speedup potential

 Can lead to useless optimization:

 Example 1: restructuring data accesses across all the application
may be a loss of time if the potential speedup is only 2%

 Example 2: various tools can detect high miss rates. It can be
useless to fix a high miss rate if combined with div/sqrt operations
because the dominating bottleneck might be FP operations.

5 / 48

Introduction: Existing tools and methodologies (2/2)

 One-way approaches/techniques:

• HPCToolKit, PerfExpert, VTune heavily rely on sampling and
hardware events.
=> Sampling-based profiling aggregates everything together
(all instances): might be counterproductive

• Scalasca/Vampir is heavily relying on tracing and source code
probe insertion
=> Tracing-based profiling is heavier (time consuming, subject
to deviation with the number of function invocations)

• In practice, it is usually a trade-off: the best choice or
combination have to be found for given application

6 / 48

Introduction: Motivating example

6) Vector vs Scalar

2) Non-unit stride accesses

4) DIV/SQRT

5) Reductions

Special issues:

Low trip count: from 2 to

2186 at binary level

3) Indirect accesses

Is it possible to:
– detect all these issues with current tools ?
– obtain potential speedup(s) estimation to guide optimization effort ?

1) High number of

statements

Source code and associated issues ~10% walltime

7 / 48

PAMDA Methodology: overview

 Our approach: Performance Assessment using MAQAO
toolset and Differential Analysis

• Work done at binary level

• Get a global hierarchical view of performance
pathologies/bottleneck

• Estimate the performance impact of a given performance
pathology while taking into account all of the other
pathologies present

• Use different tools for pathology detection and pathology
analysis

• Tool selection on pathology basis

• Fine grain - “expensive” - tools only used if necessary on
specific issues

8 / 48

PAMDA Methodology: overview

 Decision tree:

Profiling

Loops of interest

Differential analysis

CPU oriented

Code Quality Analysis

Value Profiling

Differential analysis

Memory oriented

Memory behavior

characterization

Differential analysis

9 / 48

PAMDA Methodology: overview

 Compiler remains our best friend

 Be sure to select proper flags

 Know default flags (e.g., -xHost on AVX capable machines)

 Bypass conservative behavior when possible

 Pragmas:

 Vectorization, Alignement, Unrolling, etc…

 Portable transformations

10 / 48

 Open source (LGPL 3.0)

 Currently binary release

 Source release soon

 Available for:

 x86-64

 Xeon Phi

MAQAO: Introduction

www.maqao.org

11 / 48

 Audience

 User/Tool developer:

 analysis and optimization tool

 Performance tool developer: framework services

 BULL SAS: on-going effort – PerfCloud (MIL*)

 University of Oregon: TAU tool – tau_rewrite (MIL*)

 ScoreP project: on-going effort – VI-HPS (MIL*)

MAQAO: Introduction

www.maqao.org

* MAQAO Instrumentation Language

12 / 48

 History

 Started ten years ago on Itanium

 Strong emphasis on code generated by the compiler

 Contributors

 ECR (Intel, CEA, GENCI, UVSQ)

 UVSQ through non-ECR funded projects:

 H4H

 PerfCloud

 University of Bordeaux

MAQAO: Introduction

13 / 48

 Binary level

 Framework services

 Scripting language

 Low level API

 Loop-centric (HPC)

 Produce reports

 We deal with low level details

 Users get high level reports

MAQAO: Introduction

CQA

14 / 48

PerfEval

Profiling

Locating hotspots

15 / 48

 Measurement methods

 Instrumentation

 Through binary rewriting

 High overhead / More precision

 Sampling

 Hardware counter through perf_event_open system call

 Very low overhead / less details

 Default method: Sampling using hardware counters

MAQAO PerfEval

16 / 48

 Collection level

 Inter-Node

 Node

 Sockets

 Core level

 SIMD: data //

 ILP: instruction level //

 Runtime-agnostic:

 Only system processes and threads are considered

 Function hotspots load balancing vue at (multi)node level

 Categorization (MPI/OpenMP/Pthreads/IO/…)

MAQAO PerfEval

17 / 48

 Display functions and their exclusive time

 Associated callchains and their contribution

 Loops

 Hardware counters profiles:

 cache oriented

 compute oriented

 Innermost loops can then be analyzed by the code quality
analyzer module (CQA)

 Command line and GUI (HTML) outputs

MAQAO PerfEval

18 / 48

MAQAO PerfEval

Example: NPB-MPI bt.C 36 processes

19 / 48

MAQAO PerfEval

(multi)node load balancing vue

20 / 48

MAQAO PerfEval

Node vue

21 / 48

MAQAO PerfEval

Node vue

22 / 48

MAQAO PerfEval

Profiling

Runtime specific tools

23 / 48

 Online profiling

 Aggregated metrics (coarse grained analyses)

 No traces

 No IOs (only one result file)

 Reduced memory footprint

 Scalable on 100+ procs

MAQAO PerfEval MPI

24 / 48

MAQAO PerfEval MPI

25 / 48

CQA

Code Quality Analysis

26 / 48

 Main performance issues:

 Core level

 Multicore interactions

 Communications

 Most of the time core level is forgotten

CQA: Code Quality Analyzer

27 / 48

 Targets innermost loops

 Source loop versus assembly loop(s)

 Versioning

 Peel / Main / Tail

 Or combination of both

CQA: Code Quality Analyzer

Source Loop

L255@file.c

ASM

Loop 1
ASM

Loop 2

ASM

Loop 3

ASM

Loop 4

ASM

Loop 5

28 / 48

 Simplified static performance model

 Simulates a target (micro)architecture execution pipeline

 Instructions description (latency, uops dispatch...)

 Microbench MAQAO module

 Out of order considered as ideal
=> no buffers (ROB, RS, PRF)

 Data is considered resident in L1$
=> Memory issues should be solved before using CQA

CQA: Code Quality Analyzer

29 / 48

 Assess code quality given a binary loop

 Static performance estimation: lower bounds on cycles

 Quality metrics:

 Vectorization degree

 Impact of address computations (scalar integers)

 FP contribution (all or pure arith without memory)

 Detect high latency instructions

 Unrolling factor detection

 Provide high level reports

 Provide source loop context when available

 Describing a pathology

 Suggested workarounds to improve static performance

 Reports categorized by confidence level:

 gain, potential gain, hint and expert

CQA: Code Quality Analyzer

30 / 48

CQA: Code Quality Analyzer

31 / 48

CQA: Code Quality Analyzer

32 / 48

DECAN

Differential Analysis

33 / 48

 Targets innermost loops

 Assembly transformations:

 Insert a new instruction

 Replace an existing instruction

 Remove an existing instruction (fill with nops)

 Differential analysis:

 Compare the performance of two loops

 The original binary loop (ref) and a transformed copy of it

 Goal: create transformations that can

 Detect bottlenecks

 Estimate associated ROI

DECAN

34 / 48

 Principle

 Performance of the original loop is measured

 Some instructions are removed in the loop body (for example
loads and stores)

 Performance of the transformed loop is measured

 Usage

 Can perform sampling by transforming only 1 instance and
abort execution

 Can replay original loop execution after modified one

 The Diff. Analysis speedup is an upper bound for optimization
on the removed instructions

DECAN

35 / 48

 Typical transformations:

 FP: only FP arithmetic instructions are preserved
=> loads and stores are removed)

 LS: only loads and stores are preserved
=> compute instructions are removed)

 DL1: memory references replaced with global variables ones
=> data now accessed from L1

DECAN

36 / 48

DECAN

FP LS

Ref

37 / 48

DECAN

Monitor :
• Execution times
• Loop Iteration numbers
• Hardware counter values

38 / 48

DECAN: Polaris example

 Polaris: introduction motivating example solution

6) Vector vs Scalar

2) Non-unit stride accesses

4) DIV/SQRT

5) Reductions

Special issues:

Low trip count: from 2 to

2186 at binary level

3) Indirect accesses

1) High number of

statements

39 / 48

DECAN: Polaris example

 FP / LS transformations

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n

Variants

Execution time

Execution time

ROI = FP / LS = 4,1

Imbalance between the two streams

=> Try to consume more elements inside one iteration.

40 / 48

DECAN: Polaris example

 FP bound: CQA provides the following metrics:

 Estimated cycles: 43 (FP = 44)

 Vector efficiency ratio: 25% (4 DP elements can fit into a 256
bits vector, only 1 is used)

 DIV/SQRT bound + DP elements:

 ~4/8x speedup on a 128/256 bits DIV/SQRT unit (2/4x by
vectorization + ~2x by using SP)

 Sandy/Ivy Bridge: still 128 bits (potential speedup 2x DP 4x SP)

 => First optimization = VECTORIZATION

 Using SIMD directive

 Two binary loops
 Main (packed instructions, 4 elements per iteration)

 Tail (scalar instructions, 1 element per iteration)

41 / 48

DECAN: Polaris example

ROI = FP / LS = 2,07 - Initial ROI was at 4,1

Removing loads/stores provides a speedup much more smaller than removing

arithmetical instructions => focus on them

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n
s

Variants

Execution time

Execution time

 After vectorization

42 / 48

DECAN: Polaris example

REF_NSD : removing DIV/SQRT instructions provides a 2x speedup

=> the bottleneck is the presence of these DIV/SQRT instructions

FPIS_NSD : removing loads/stores after DIV/SQRT provides a small additional speedup

Conclusion: No room left for improvement here (algorithm bound)

DIV/SQRT

instructions

removed

Loads/stores +

DIV/SQRT instructions

removed

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS REF_NSD FPIS_NSD

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n
s

Variants

Execution time

Execution time

 One step further

43 / 48

Success stories

Success stories

44 / 48

POLARIS (MD)

Anti-Coagulant

(7.46 nm)3

Example of multi scale problem:

Factor Xa, involved in thrombosis

• CEA-DSV : Direction des
Sciences du Vivant

• Molecular Dynamics

• Speedup: 1.5 – 1.7x

• Effort to speedup:

• ~ 2 men × months (*)

* For the MAQAO team, using ECR tools (MAQAO) and methodology

45 / 48

QMC=Chem

• IRSAMC : Institut de Recherche sur les Systèmes
Atomiques et Moléculaires Complexes

• Quantum chemistry (Monte Carlo)

• Speedup: > 3x

• Effort to speedup:

• ~ 2 men × months (*)

* For the MAQAO team, using ECR tools (MAQAO) and methodology

46 / 48

YALES2

• CORIA : Complexe de Recherche
Inter-professionnel en Aérothermochimie

• Computational fluid dynamics (CFD)

• Speedup: up to 2.8x

• Effort to speedup:

• ~ 3 men × months (*)

* For the MAQAO team, using ECR tools (MAQAO) and methodology

47 / 48

Thanks for your attention !

Questions ?

Acknowledgements

This work was supported by
CEA, GENCI, Intel and UVSQ.

www.maqao.org

48 / 48

Thanks for your attention !

Questions ?

Thanks for your attention !

Questions ?

Meet us @ ECR Booth 24

www.maqao.org

49 / 48

Backup Slides

50 / 48

MIL: MAQAO Instrumentation Language

MAQAO Instrumentation
Language

51 / 48

MIL: MAQAO Instrumentation Language

 A domain specific language to easily build custom tools

 Fast prototyping of evaluation tools

 Easy to use easy to express productivity

 Focus on what (research) and not how (technical)

 Coupling static and dynamic analyses

 Static binary instrumentation

 Efficient: lowest overhead

 Robust: ensure the program semantics

 Accurate: correctly identify program structure

 Drive binary manipulation layer of MAQAO tool

52 / 48

MIL: MAQAO Instrumentation Language

 Current state of the art:

 Dyninst appears as the most complete

 Not sufficient given our goals

Dynsinst PIN PEBIL

Language type API Oriented / DSL API Oriented API Oriented

Instrumentation type Static/Dynamic binary Dynamic binary Static binary

Overhead High/High High Low

Safe Method Yes Yes No

53 / 48

MIL: MAQAO Instrumentation Language

 Objects

 Events

 Filters

 Probes

 Actions

 Variable classes

 Runtime embedded code

 Configuration features (output, properties,etc.)

54 / 48

MIL: MAQAO Instrumentation Language

 Example 1:
TAU Profiler

55 / 48

MIL: MAQAO Instrumentation Language

 Example 2:
Filtering

Previous example only needs an

additional statement

