Optimus®

Application of Optimization & CFD in Surgical Planning for Percutaneous Coronary Intervention

Silvia Poles & Taylor Newill Application Engineers, Noesis Solutions

(silvia.poles,taylor.newill)@noesissolutions.com

Problem description

- 1 in 4 Deaths in the USA are from heart disease
- Over 600,000 died from it last year alone
- Percutaneous Coronary Interventions (PCI's)
 work well, but there are problems and there
 has been relatively little fluid analysis on the
 procedure
- No surgical planning for PCI's

Myocardial Infarction (MI)

- Interruption of blood to an area of the heart
- Caused by an embolism (blockage)
- Most embolisms result from atherosclerotic plaque breaking free from vessel walls

Current Solution

- Percutaneous Coronary Intervention
- Stenting
- Does not reduce expansion at the distal area

Model notes

- Model shown is an aortic coarctation
- Readily available
- High blood flows
- Same hemodynamic properties

Model notes

Proposed Solution

- Medical Planning for Optimal Shape
 - Reduce expansion in the distal region
- Provide doctor with quantitative results
- Optimus used to drive optimal design
- Minimize volume of artery
 - This ensures the minimization of expansion on proximal region

Challenges

- Models are non-CAD based
- CFD Models are large and require timeconsuming simulations
- Changes should be organic using nonengineering parameters
- Highly technical tools to be used by overworked physicians

Barriers to optimizing in CFD

Optimus® Process Integration & Design Optimization

Noesis Solutions

Leading Solutions for Engineering Optimization

A leading software & services provider

... more than 15+ years & 100+ person-years experience in Simulation Process Automation & Design Optimization. The largest OEM provider of embedded optimization.

A strong worldwide presence

... sales offices across Europe, US and Asia realizing double-digit profit growth for 15+ years.

Optimus Workflow

Change Geometry

Perform Geometry Based Calculation

Export New Geometry

Calculate Mesh

Decide on Analysis

Solve Model in Analysis

Extract Outputs from Reports

Mesh morphing to assist in optimization

- No way to make changes to the model
- Remove the need to re-mesh each time
- Mesh morphing tool that utilizes Bezier volumes to morph nodes
- Arbitrary placement and deformation of Bezier nodes.
- Real time morphing

The Initial CFD Model

Preparing the Model for Morphing

Deformation Areas

Creating Bezier Control Volume

Optimization Goal

- Minimize the pressure drop across the two planes shown
- Minimize Volume of mesh
- Reduce velocity gradient at stenosis
- Reduce pressure on distal region

Optimus Workflow

- 3 Inputs
- 3 Outputs

Automation Setup

	or			
Time out Ve	ommands Exception Hand 0 hours 5 minutes sion: Sculptor ution: Deforms any mesh			
Name	Description	Value	Low	High
Deformatio.	Sculptor .def file locatio	on \$deformMe.def\$		
deformMe.	def	deforme	ed.cas	

2 types of parallel execution

• **Experiment level**: For every single independent analysis of the sequence, several execution can be performed simultaneously for the different design alternatives

• Workflow level: 2 or more analyses of a same workflow are independent and can be execute "in parallel" for the same experiment

Parallel & HPC

- Optimus can manage each job separately
- All methods and optimizers can take real advantage of parallelization
- Takes advantage of heterogeneous networks (and GPU)
- Unique capability

Parallelization Example

Only Experiment level

Other Optimizer

Sculptor (< 1min)

Fluent (25 min)

1000 run*(1min+25min)/2=13000min 13000min / 60min = 217h 217h = 9 days

<u>Time</u>

Dependencies Example

Experiment level & Workflow level

OPTIMUS

Sculptor (<1 min)

Fluent (25min)

<u>Time</u>

6250min = 104h = 4.3 days

Optimization Process

- The chart displays a shallow Pareto front
- Weight pressure drop more than volume

Pressure

- Pressure drop reduced by 28%
- The low pressure region in the area proximal to the stenosis was increased by 37%
- The high pressure region in the distal area was reduced by 26%

Velocity Magnitude

- Reduced flow variability
- Hemodynamic flow velocity was decreased through the medial area by 22%

Results – Volume

Subtle volume changes,
 1.1% decrease

Increase in medial area
 volume disguised changes
 in distal area volume

Experiment	Pressure Drop	Delta	Volume	Delta	Velocity	Delta
Baseline	3.0406		2.532E-05		4.4280	
Experiment26	2.1835	-28.19%	2.501E-05	-1.23%	3.4617	-21.82%

Conclusion & Future Work

- The method proved to be a success
 - Reduce expansion in the distal region
 - Provide doctor with quantitative procedure feedback
 - Optimus used to drive optimal design
- The method was "easy enough a Doctor could do it"
- The method can be even easier using Optimus API to integrate all this in Excel or a browser
- Future work: including robustness and stochasticity in the process

Optimus®

Thank You

Special thanks to: Carnegie Mellon University, Riverview Medical Center, Indianapolis, Indiana

