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Challenges Businesses Are Facing Today
Big Data for evidence-based decision making

 Goal

– Large (and increasing) amount of available data

– Leverage data to make better decision

 Organizational issues

– Rapid evolution

– Data scientist need to share their algorithms and results efficiently

 Technical issues

– Datasets do not fit in the memory of a single computer

– Processing these data requires huge computing resources
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How MATLAB Helps Tackling Big Data

Data

Compute PowerPeople & Systems

 More data, faster access

 Complex / incomplete / changing

formats handling

 Algorithms for complex problems

 Share algorithms & protect IP

 Real-time analytics

 Leverage HPC facilities & clouds

 Distributed memory framework
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Scaling Out Calculations

Parallel Computing Toolbox (PCT)

MATLAB Distributed Computing Server (MDCS)
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MATLAB & High Performance Computing?

Cleve Moler

 Inventor of MATLAB

 Co-Founder of MathWorks

 One of the authors of the LINPACK library
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Data Analytics Workflow

Data

Processing

Data

Access

Data

Analytics

– Descriptive Statistics

– Machine Learning

– Neural Networks

– MapReduce

Today’s presentation
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Access Large Datasets
datastore

 Data container that allows to easily

read data that are too large to fit in

the computer’s memory

 Incremental read: data loaded

in memory by parts

 Data sources of various natures

– Database (using Database Toolbox)

– Single text file or collection of text files

– MATLAB is generally able to read and write data directly from/to HDFS

 datastore can be partitioned using the partition function

– Allows parallel data access

– Take advantage of parallel file systems
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Datastore Map Reduce

MapReduce Programming Model
Example with air traffic dataset: find the longest flight for each carrier
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 mapreduce has been introduced in MATLAB 

 Strengths

– Analytics are made easy when they fit in the MapReduce framework

– MapReduce on Hadoop can take advantage of data locality in HDFS

 Limitations

– Subset-by-subset data processing, no vision of the whole dataset

– Scalability issues in some cases

High-speed network

Shared

filesystem

MapReduce Programming Model
Strengths and limitations
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A Parallel Programming Model for Predictive Analytics

 Parallel computing implementation in MATLAB

– Capabilities all based on MPI

– MATLAB offers a transparently distributed data structure: distributed

Process

#1

Process

#2
Process

#N
…

distributed array

Dataset #1 Dataset #2

Run in-memory

parallel analytics

datastore
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A Parallel Programming Model for Predictive Analytics
Scalability analysis

1. Read data from one or

multiple datasets and

preprocess it

2. Store the preprocessed

data in a distributed array

3. Run in-memory analytics

on the distributed array

Does it

scale?

Does it require to store 

the complete dataset on 

a single process?

(up to 100s of processes)

(depends on the algorithm) (depends on the algorithm)
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http://ec2-54-165-201-58.compute-1.amazonaws.com:8080/DemandForecastWeb/

A Parallel Programming Model for Predictive Analytics
Example: power load forecasting

http://ec2-54-165-201-58.compute-1.amazonaws.com:8080/DemandForecastWeb/
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A Parallel Programming Model for Predictive Analytics
Example: power load forecasting

 Goal

– Develop a predictive model to forecast electrical power consumption

– Deploy the prediction tool in power plants to adjust production

 Predictors from different datasets

– Power consumption over the previous days

– Calendar information: day of the week? holiday period?

– Climate data

 Challenges

– Multiple data sources with different formatting

– Datasets have different samplings

 Final result

– Predictive model based on Neural Networks

– Deployed in production using MATLAB Production Server
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Key Takeaways

 Access large datasets with MATLAB

– datastore allows to read datasets that do not fit in memory

– partition allows parallel data access

 Tools for easily developing algorithms and scaling out computations

– No need to be an expert in computer science

– No need to be an expert in parallel computing

 MathWorks development teams heavily involved

– Continuous development and improvement

– New features in each release

Thank you!

Q & A session


