

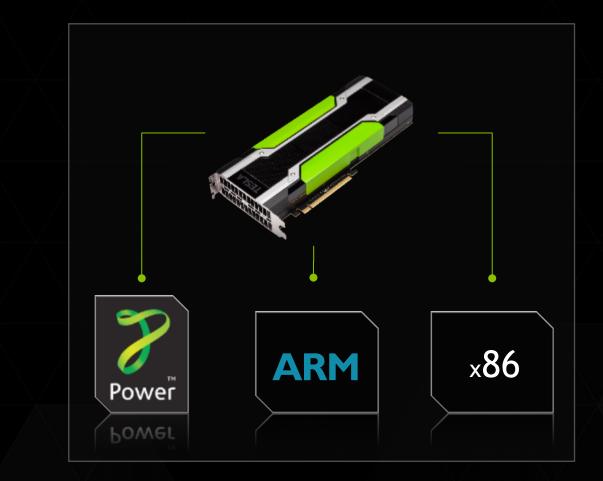
DEEP NEURAL NETWORKS AND GPUS

Julien Demouth

THE WORLD LEADER IN VISUAL COMPUTING

VIRTUALIZATION

DESIGN


GAMING

MACHINES

GPU Computing

GPU COMPUTING

Run Computations on GPUs

CUDA

Framework to Program NVIDIA GPUs

A simple sum of two vectors (arrays) in C

```
void vector_add(int n, const float *a, const float *b, float *c)
{
    for( int idx = 0 ; idx < n ; ++idx )
        c[idx] = a[idx] + b[idx];
}</pre>
```

GPU friendly version in CUDA

```
__global___ void vector_add(int n, const float *a, const float *b, float *c)
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    if( idx < n )
        c[idx] = a[idx] + b[idx];
}</pre>
```

GPU ACCELERATED LIBRARIES

"Drop-in" Acceleration for Your Applications

Deep Neural Networks

GOOGLE DATACENTER

ACCELERATING INSIGHTS

Now You Can Build Google's \$1M Artificial Brain on the Cheap "

WIRDD

2,000 CPUs • 16,000 cores

1,000 CPU Servers

600 kWatts \$5,000,000

3 GPU-Accelerated Servers 12 GPUs • 18,432 cores

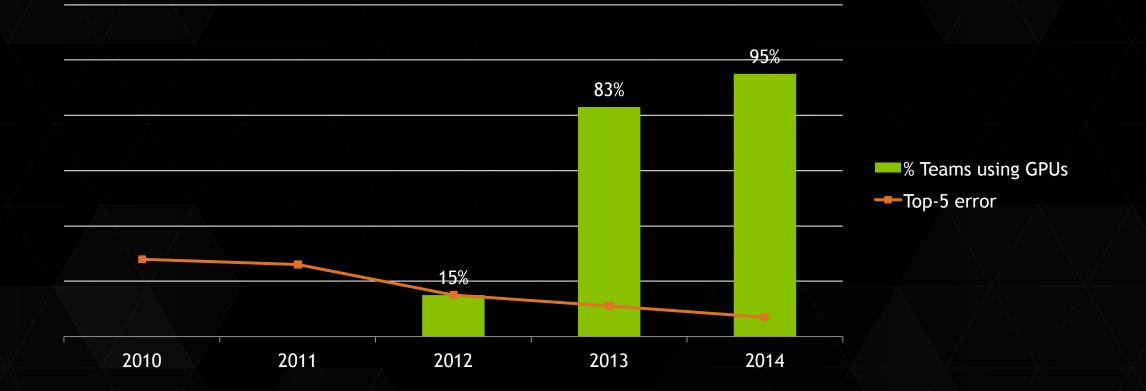
4 kWatts

\$33,000

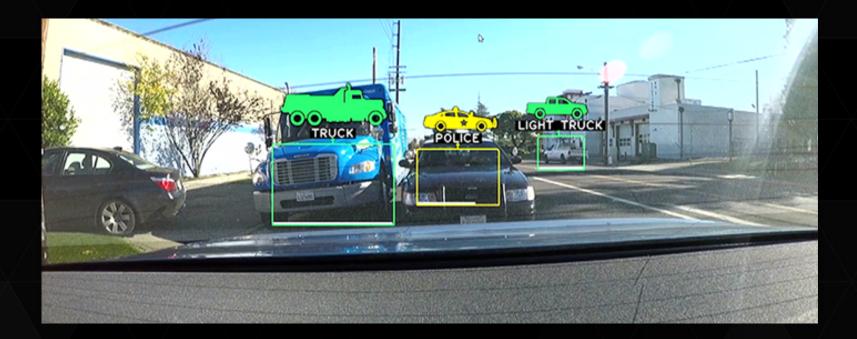
STANFORD AI LAB

Deep learning with COTS HPC systems, A. Coates, B. Huval, T. Wang, D. Wu, A. Ng, B. Catanzaro ICML 2013

IMAGE CLASSIFICATION

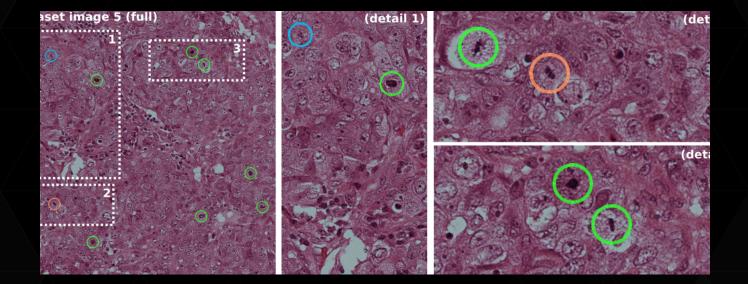

Recognize not only Cats

"it is a baby"


NATURAL IMAGE CLASSIFICATION

ImageNet: results for 2010-2014

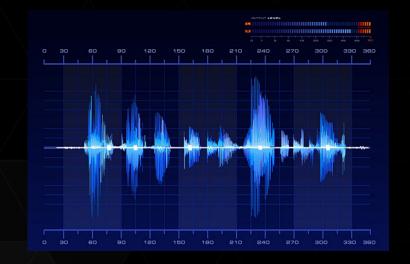
ADVANCED DRIVER ASSISTANCE SYSTEMS


Localization and Classification

https://youtu.be/zsVsUvx8ieo

CANCER SCREENING

Mitosis Detecion



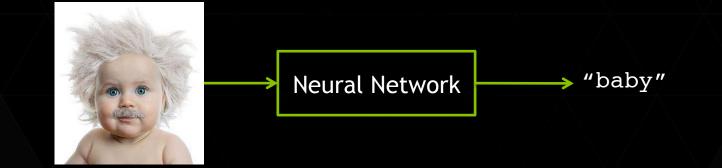
Ciresan et al. Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks, 2013

12 <mark> IVIDIA</mark>,

INSTANT SPEECH TRANSLATION

See Skype for Example

4 **?** <


http://blogs.skype.com/2014/12/15/skype-translator-preview-an-exciting-journey-to-a-new-chapter-in-communication

13 <mark>© NVIDIA</mark>.

More Details

Inference

A neural network takes an input and computes a result from it

It is the inference

Training

Weights ??

The network is parameterized by weights

The weights have to be *learned*. It is the *training*

"baby"

"baby"

Loss

- Labeled training set (Supervised learning)
 - ▶ For each sample, we know the ground truth
- Loss function

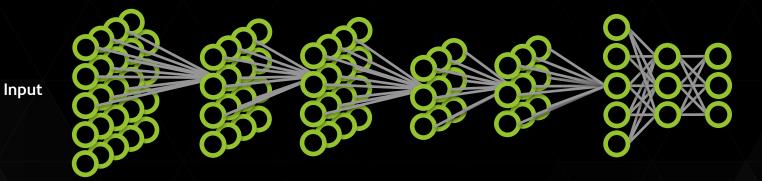
"baby"

- Measures how badly the network infers (i.e. high if the network does poorly)
- Example of loss function: Mean of square errors (MSE)

$$\frac{1}{m} \sum_{i=1}^{m} \|y_i - \operatorname{net}(x_i)\|^2$$

Loss Minimization

Minimize the loss using a gradient descent

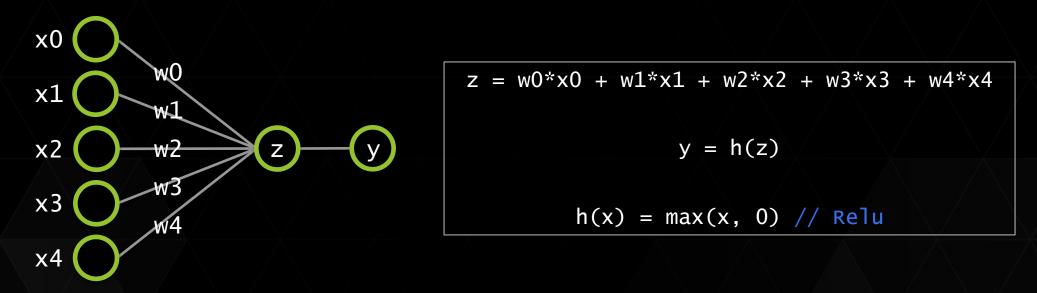

▶ For example, stochastic gradient descent with momentum and learning rate

Gradient computed with respect to the weights of the network

DEEP NEURAL NETWORK

Architecture

- Neurons are grouped into layers (deep = several hidden layers)
 - Different types of layers: Fully connected, convolutional, ...



Result

The weights are on the connections between the neurons

Simple Neuron

A neuron is connected to other neurons on the "previous" layer

Activation function (h): Tanh, sigmoid, ReLU, maxout

GPU Implementation

21

cuDNN

Building Blocks

A kind of "BLAS" for deep neural networks

Core routines to implement a deep neural network

> Developed by NVIDIA

See <u>https://developer.nvidia.com/cuDNN</u>

Integrated into several frameworks (Theano, Torch, Caffe, yours?)

cuDNN

GEMM

Many operations in deep neural networks expressed as GEMM

GEMM: Dense matrix product - Extremely efficient on a GPU

Writing an extremely fast GEMM is hard

- See: <u>https://github.com/NervanaSystems/maxas</u>
- Fast GEMM is written directly in assembly language (using a generator)

RESOURCES

Where to Learn

- Andrej Kaparthy's class on Deep Neural Networks
 - http://cs231n.github.io

- Sander Dieleman's blog posts
 - http://benanne.github.io/posts/

The research papers on ArXiV (or elsewhere): <u>http://arxiv.org</u>