

Intel and Big Analytics

Richard Pilling Director, Analytics and Big Data EMEA

Intel Confidential — Do Not Forward

Why does Intel Care about Big Data? Data is Growing Faster than Moore's Law -Moore's Law Data Error 2012 2014 2016 2018 2020

Source: https://amplab.cs.berkeley.edu/2013/02/07/for-big-data-moores-law-means-better-decisions/

'inte

Great Partnerships Yield Great Results

Faster Insights, Better Security, Less Complexity

ntel

Maintain an open horizontal platform for big data
Continue to enhance Apache Hadoop and related projects

Enable Cloudera to Run Best on Intel

- Optimize performance across compute, storage, & network
- Ensure platform performance, security, management

cloudera[®]

Ask Bigger Questions

Empower the Big Data Ecosystem

- Establish usage models and industry standard benchmarks
- Develop reference architectures and industry-wide solutions

Compute Bound

Human

Storage Bound

Network Bound

Machine

Intel Confidential — Do Not Forward

′inte

Business Data

Retail – Customer Loyalty

What do the in common?

- large quantities of calcizinc
- unscented lotion
- large bags of g
- hand sanitize

High Guest Pregnancy Prediction Score

cts have

esium and

www-nc.nytimes.com/2012/02/19/magazine/shopping-habits.html

Machine Data Federal Government

Machine generated: e.g. Video Analytics Up to 65mile² image 1.8GP image via 92 – 5MP imagers Tracks 65 targets real-time down to 6cms 12-hours flights @ ~20Kft 6PB HDV per day x30K drones over next 10 years / 110 bases

1/3 Zettabyte per week

40 Square Kilometers 0.15 m Ground Sample Distance Ground Station

Intel focus on big data analytics from top-to-bottom

10

HPC's Current Frontier

Molecular Structures

Genomics

Weather & Climate

Manufacturing & Design

Financial Markets

Biofuels

Large-Scale, Cumulative Computation Distributed Over Multiple Connected Nodes Intense Anything (Memory, I/O)... Intense Floating-Point, Integer

Simulation, Technical Batch, Highly Parallel Scientific Expensive

11

Big Data – what is different?

Transform Data Into Knowledge (vs. today's Knowledge into Data)

tel) 12

HPC and Big Data Analytics Stacks

Emergence of High Performance Analytics

13

(intel

High Performance Analytics Workflow

Compute On/With Dependencies & Relationships

) | 14

The Big Data Paradigm Change

Codes Based on Analytic Models

Codes Based on Data Driven Models

Well Known HPC Workloads

HPC Today

- ✓ Compute Focused
- ✓ Minimizes Data Movement
- ✓ I/O predominantly For Checkpoints
- ✓ Datasets are ~Petabytes
- ✓ Data for compute is sampled or generated

New Big Data Workload

HPC Tomorrow

- ✓ I/O Focused
- ✓ Lots of Data Movement
- \checkmark I/O predominantly for storing & retrieving data
- ✓ Datasets are ~100's of Petabytes
- ✓ All data is needed all the time

System Design Points Will Change!

Intel Confidential — Do Not Forward