Imperial College ™ senal
London -

Big Data and the evolving many-core
landscape: Are traditional low level
programming models really enough?

g
@
Q
Ce)
[}
o
Q
Q
7]
d
= L
o
7]
2
Q
7]
Q
o

Gerard Gorman, Imperial College London

Intel Parallel Computing Center OPESC]
Open Performance portablE SeismiC Imaging

EPSRC

Pioneering research
BG GROUP and skills

3

300,000

Approximate number of
manufacturers in the United States

99%

Of which are categorized as small
or medium (1-500 employees)

0 200%
, More jobs are provided by small and
medium manufacturers than large ones

98%

Of all products will be developed
and manufactured digitally by 2020

94%

Of all small and medium
. e manufacturers have not yet adopted
z high-performance digital manfacturing

\l . >y .'
A"':;“ D -
"

~

e 1%

http://www.ncms.org/index.php/programs/digital-manufacturing-initiative/digital-manufacturing-sig/

HPC often compared to F1...
..the problem is that the comparison is
accurate.

Original: https://www.youtube.com/watch?v=EGUZJVY-sHo

0.C. ZIENKIEWICZ & R.L. TAYLOR ..,_ -3

| NUMERICAL | T
RECIPES in | FINITE ELEMENT |
Fortran 77 METHOD |

INPUT: REASON * OUTPUT: PLEASURE

—"
'«‘_'*‘.:

{vprograr
The beszaeking guide for ‘.m-.;x:y]
—.und.:lfd for the mewest ANS! 8!

\"'nl.un;cl 1 C+ ‘
THE BASIS ' i
§ ouMM

APPLICATION DESIGN ELT-1R LR Parallel

AND DEVELOPMENT
’ - the |

Programming ‘ | AReference Wl
. REst of Us! e

ln T —

-) b
p|ate. Stephes Randy Duele
e Solutic
‘ near Systems:
For Scentists » ding Blocks
& Engineers Wilhiam M. Press Saul A Teuk = L - M h d
OpenCL Programming erative Methods

Wilham T. Vettorting Brian P. Fla
“
by Example -

o yVaiuw
The Complete Referance MICHAEL METCALF
e U JOHN REID
| —T—— R | MALCOLM COHEN

feTTEESnIEee— W SOFTWARE-ENVIRONMENTS - JOOLS

OXFORD

SC14 Registration Count 2014-Nov-10

Code Description |Booked
NOTES Tutorial Notes

MFO1 OpenACC: Productive, Portable Performance on H) 44
MF02 Advanced OpenMP: Performance and 4.0 Features a7
MF03 Advanced MPI Programming 68
MF04 OpenCL: A Hands-On Introduction 39
MFO0S Fault-tolerance for HPC: Theory and Practice 51
MF06 Parallel O In Practice 60
MFO7 Debugging and Performance Tools for MPI and Ops 35
MFO08 Node-Level Performance Engineering 47
MFO09 Python in HPC 106
MHO1 In Situ Data Analysis and Visualization with ParaVie 21
MHO02 Parallel Programming with Charm++ 15
MHO3 InfiniBand and High-Speed Ethernet for Dummies 104
MHO4 Intreducing R: From Your Laptop to HPC and Big D 51
MHOD5 Effective HPC Visualizati | Data Analvsis usi 25
MHOE Enhanced Campus Bridging via a Campus Dala Se 24
MHOQ7 OpanSHMEM: Tools for Productive PGAS Program 27
MHO8 Desiani | Using High-End C ing Syst a7
SEO1 Large Scale Visualization with ParaView 41
SF02 Linear Algebra Libranes for High-Performance Com N
SFO3 From "Hallo Workd" to Exascale Using x86, GPUs a 76
SFO4 Parallel Programming in Modern Fortran 25
SEQS Efficient Parallel Debugging for MPL, Threads, and | 28
SEQ6 Hands-On Practical Hybrid Parallel Application Perf 27
SEQT A Hands-On Infroduction to OpanhP az
SFO8 SciDB - Manage and Analyze Terabytes of Array Da 4
SFO9 Parallel Computing 101 ar
SE10 Programming the Xeon Phi 69

SHO1 MPI+X - Hybrid Proaramming on Modem Compute 43

Specific example — oil&gas industry

unconformity;

Full Waveform Inversion

* Given a sound source, and an array of receivers,
can we infer the subsurface?

* Yes - but it is computationally expensive:

— Lots of data, terabytes per survey (this is a real Big
Data problem!)

— Dominant computational expense is running the
wave model (aka forward model, and propagator)
for each shot of data.

— Regardless of how good the inversion algorithm is,
the quality of the final subsurface image will be
limited by the accuracy of the wave model used.

Opportunity & challenge |
Elastic wave equation (Improved model)

e Elastic wave model provides a significantly better
representation of the wave field than the
standard acoustic models.

— Models both p-waves, s-waves and Rayleigh waves.

* |tis also much more expensive to compute:
— More terms in the equation to compute.

— S-waves travel at about half the speed of p-waves,
and there have half the wavelength, therefore:

e Grid resolution needs to be doubled (factor of 8 increase in
memory for 3D).

* Time step needs to be halved — therefore must execute
twice the number of time steps.

Opportunity & challenge Il
Advanced numerical methods

e Regular grids with finite difference is the modus operandi of oil and gas
industry.

* However:

— Unstructured grids are more efficient at representing complex geological
features.

— High order methods can achieve the same accuracy as finite difference
methods using:

* Coarser resolution (fewer grid points).
* Larger time step.
* Less memory.

e Shorter time to solution.

* Great data locality, opportunities for vectorisation etc.

* Best example from global seismic: SeisSol — Arbitrary high-order
DERivative Discontinuous Galerkin (ADER-DG), 2014 Gorden Bell finalist.

* Implementation complexity!

— Alot more software is required to manage unstructured grids.
— Impacts entire inversion software stack.

— High order methods are many times more involved finite difference methods.

Opportunity & challenge Il
Architecture and code modernisation

Computing performance continues to track Moore’s Law — but you have to
work harder to make use of it.

Many-core era software must exploit parallelism at every level to achieve
good computational efficiency, e.g.:

— Various parallel programming models (MPIl, OpenMP/pthreads, OpenCL,
OpenMP, Cilk, etc.)

— Deep memory hierarchy, data locality.

— Vectorisation (AVX).

— Heterogeneous computing — Intel Xeon, Xeon Phi, etc.
Parallel programming has always been considered challenging — and now
it has become over more demanding:

— Greater need for specialists in parallel programming for HPC.

— Increasingly difficult for domain specialists to implement high performance
software although they are the algorithm specialists.

— Traditional numerical algorithms may need to be discarded in favor of
methods better suited to computer architectures.
Domain Specific Languages (DSL’s) offer a route to bridge the divide
between domain specialists (often the application developers) and parallel
programming specialists (in this case compiler writers).

Inversion algorithm (High level language such as Python, MATLAB or Julia)

Geophysicist : i . i . i .
phy Nonlinear gradient-based optimization methods; compressive sensing (randomised sparse sampling)

Forward models written using DSL: 2D/3D; acous-
tic/elastic wave equation; isotropic/anisotropic Backward (adjoint) model (Code generation)
elastic modulii; and time/frequency domain

Numerical
analyst

—)

Gradient&Hessian operators (Code generation)] [Reference implementation of kernels (Fortran, C, etc.

main specific optimisations
developers : >)

UFL for finite element (Firedrake) sions to support randomised sampling; High

) Seismic data 1/O module (SEG-Y) with exten-
throughput checkpointing module for inversion

Anisotropic adaptive meshes

Platform specific data layouts and task scheduling;
code generation for MPI with OpenMP or OpenCL

Platform

o Platform tuned kernels; autotuning frameworks) (MPI, OpenMP, OpenCL
specialist

Library, and ; ;
DSL compiler (Stencil DSL for finite difference (Pochoir)) (LRI (A ST (o

x86_64, Intel Phi, GPGPU etc.) (Future architecture

@

Domain
developer:
expert in
application
field

w

Numerical
analyst:
expert in
finite-
element
methods

An expert for

each layer

w

Domain
developer:
abstractions
not
expressible
in UFL

w

Computer
scientist:
expert in
parallel
programming,
optimisation

Multicore CPU + MPI

UFL/Firedrake

Unified Form Language (UFL)

Domain-specific language developed by
the FENICS project: high-level description of

weak forms of PDEs,
mathematical notation

very close to

UFL code

UFL Code Generation Engine

Implements local assembly strategies for
finite element forms: breaks the link
between numerical problem specification
and algorithmic implementation

Local assembly
kernels and
data dependencies

OP2 Interface

Abstraction for the specification of explicit
parallel loop computations declared over
an abstract data representation of
unstructured meshes

Parallel loops over
kernels with access
descriptors

OP2 Transformation/Scheduling
Implements threading, colouring, message

passing, data marshalling for different
platforms: breaks the Ilink between
algorithmic and parallel implementation

rA weak form of the shallow water equations

/qV~udV=—/ u-n(g" —¢7)ds
o rE

/v-Vth = [(h* —h7)n-vdS
0

re
can be represented in UFL as

[UFL source ey

FunctionSpace (mesh,
FunctionSpace (mesh,
V*H
, q) = TestFunctions(W)
, h) = TrialFunctions (W)
_u = inner(v,u)*dx
h = g+h*dx
= =-inner (avg(u),jump(q,n))«ds
= c**2+*adjoint (Ct)
F = f+inner(v,as_vector([-u(1],u(0]]))*dx
A = assemble(M_u+M_h+0.5%dt*(C~-Ct+F))
A_r = M_u+M_h-0.5*xdt*(C-Ct+F)

’Raviart -Thomas’, 1)
‘DG*, 0)

OOXXE~~~E X<
L = <

4)

ocal assembly kernel

void Mass(double localTensor [3][3])
{

const double qwl(6] = { ... };

const double CG1[3]1[6] = { ... };

for(int i = 0; i < 3; i++)

for(int j = 0; j < 3; j++)
for(int g = 0; g < 6; g++)
localTensor [1][j]
+= CG1[i]l[g) * CG1[jllgl * qwlgl);

parallel loop

over all grid cells,

in unspecified order,
partitioned

unstructured grid
defined by vertices,

edges and cells

GPU + MPI

......

Explicitely parallel
hardware-specific
implementation

Future hardware

Abstraction facilitates automatic differentiation of models

®
n Numerical HPC and Numerical Collaboration Industries Support About
Services Supercomputing Software

j‘f(")‘j""’g(")K /)24-10 5 -
}«Ax:-‘\a&-\—c { X-3#0 it 2

j,&l,x-_,-mmu#—'(rﬁ_j__‘_ e 4
x—s)@H) (x+4) -3

g ><3-’\+2><—-6 —<=2x—1=

W ﬂu;ec‘

THE WILKINSON PRIZE FOR NUMERICAL SOFTWARE 2015

The Wilkinson Prize was established to honour the outstanding contributions of Dr James Hardy Wilkinson & to the
field of numerical software. It is awarded every four years at the International Congress on Industrial and Applied .
Mathematics by Argonne National Laboratory %, the National Physical Laboratory, and the Numerical Algorithms /= &
Group. The recipients are authors of an outstanding piece of numerical software, judged on: i

¢ the clarity of the software implementation and documentation;

¢ the importance of the application(s) addressed by the software;

* the portability, reliability, efficiency and usability of the software implementation;

¢ the clarity and depth of analysis of the algorithms and the software in the submission;
¢ the quality of the test software.

The 2015 prize is awarded to P.E. Farrell & &{University of Oxford), S.W. Funke (Simula Research Laboratory), D.A. Ham ¢ (Imperial College London),
and M.E. Rognes ' (Simula Research laboratory) for the development of dolfin-adjoint =, a package which automatically derives and solves adjoint
and tangent linear equations from high-level mathematical specifications of finite element discretisations of partial differential equations. The prize
will be presented at ICIAM 2015 and will consist of $3000 plus a commemorative plaque for each winner.

Example using UFL/Firedrake

@ Velocity-stress formulation of elastic wave equation, with isotropic stress:

ou

— —V.-T 1

Py =V (1)
OT -
E:)\(V-u)ﬂ—ku(VquVu) (2)

@ Weak form of equations written in the high-level Unified Form Language
(Logg et al., 2012), e.g. (1):
Fu = density*inner(w, (u - u0)/dt)*dx + inner(w, div(s0))x*dx

@ Change order of DG spatial discretisation with a ‘flick-of-a-switch’, e.g.
P1-DG to P4-DG:

U = TensorFunctionSpace(mesh, "DG", 1) —
U = TensorFunctionSpace(mesh, "DG", 4)

@ UFL compiled down to low-level, optimised C code, and targetted to specific
hardware architecture.

@ Simulation of an eigenmode to verify model correctness.
@ Numerical solution compared with analytical solution at T =5 s.

@ For degree d polynomial basis functions (d = 1,2,3,4) on increasing mesh
resolutions, we observed O(d + 1) convergence for velocity, O(d) for stress.

@ ...Except for d = 4 where the overall convergence was limited to 4th order
because of 4th order leapfrog scheme.

100 ————— — — — I 10° , : S — —_—

107

9
(S5}

103 ...

—_
S
4

104 []

9
IS

103 [| R b

—_
S
b

Stress error in L2 norm

10-°f ...

9
(=)}

Velocity error in L2 norm

1077}

_____ First-order convergence

g - Second-order convergence |[{ _}---- * Second-order convergence |
10 =+ Third-order convergence |[] i =+ =+ Third-order convergence |
,,, Fourth-order convergence o Fourth-order convergence |]

Characteristic element length Characteristic element length

Alternative approach - Stencil languages

* Good for applications such as finite difference, image
processing (see conference proceedings for HiStencils).

* Automate the entire workflow with smart abstractions
— Python/SymPy (high level, symbolic math).
— Code generation to target stencil language, e.g. Pochoir.

— Code generation from stencil language to native source
code.

* High level retains expressiveness — key to innovation.

* Extreme optimization techniques performed by the
stencil compiler.

e Separation of concerns enables effective collaboration.

Conclusions

To bring about disruptive change in areas such as data inversion and
design optimization progress must be made on three fronts:

— Better models.
— Advanced numerical models.
— Domain specific languages (DSL’s) and code generation.

A number of stencil compilers are already available for finite difference
and performance results show that these already offer an attractive code
modernization solution without impacting the rest of the software stack.

Methods pioneered by SeisSol for global seismic inversion appears to offer
the best numerical approach currently. A drawback with moving to these
sophisticated methods is that they are challenging to implement — which
raises issues for code optimization and sustainability.

UFL and the Firedrake compiler facilitates a separation of concerns which
allows application developers to develop these sophisticated schemes
without any knowledge of the hardware, while compiler writers take
these abstract forms and automatically generate native source code
whose performance is competitive to what a human expert could achieve.

Acknowledgements

* Imperial College London:
— Gerard Gorman (Earth Science and Engineering)
— David Ham (Computing/Mathematics)
— Christian Jacobs (Earth Science)
— Paul Kelly (Computing)
— Michael Lange (Earth Science/Computing)
— Lawrence Mitchell (Computing/Mathematics)
— Matthew Piggott (Earth Science and Engineering)
— Tianjiao Sun (Computing)
 SENAI CIMATEC, Brazil
— Renato Miceli (Computing)
— Marcos de Aguiar (Computing)
— Felippe Vieira Zacarias (Computing)

OPESCI - http://opesci.github.io (Intel PCC)

Firedrake — http://www.firedrakeproject.org

FENICS — http://fenicsproject.org

Dolfin-adjoint — http://www.dolfin-adjoint.org

PRAgMaTIc —https://github.com/meshadaptation/pragmatic
PETSc - http://www.mcs.anl.gov/petsc/

PRISM — http://prism.ac.uk
AMCG - http://amcg.ese.ic.ac.uk

