Multi-scale simulation of heterogeneous catalysis reactions From quantum *ab initio* calculations to experimentally validated kinetic models

Céline Chizallet

24/06/2015

Energies nouvelles

IFP Energies nouvelles Catalysis and Separation Division Rond Point de l'échangeur de Solaize, BP3 69360 Solaize celine.chizallet@ifpen.fr

IFP Energies nouvelles Catalysis and Separation Division

Energies nouvelles

Role of the Catalysis and Separation Division: discovering and developing new catalysts and adsorbents For FUELS and CHEMICALS production processes

What is a catalyst ?

Chemical component which increases the RATE of a reaction

Eyring's law gives expression of the rate constant : k

$$=\frac{k_{B}T}{h} \times \exp\left(\frac{-\Delta_{r}G^{\neq \circ}}{RT}\right)$$

Energies

Process design simulation scales

Energies nouvelles

Examples of industrial relevance : Outline

1. PETROCHEMISTRY

Butadiene selective hydrogenation on palladium From ab initio calculations to CFD

With L. Briquet (ENS-Lyon), P. Raybaud (IFPEN), P. Sautet (ENS-Lyon), J.M. Schweitzer (IFPEN), J. Verstraete (IFPEN), A. Hammouti (IFPEN), A. Wachs (IFPEN), M. Rolland (IFPEN)

2. BIOMASS CONVERSION → CHEMICALS AND FUELS Dehydration of isopropanol on gamma-alumina From ab initio calculations to kinetic modeling + experiments

With K. Larmier (UPMC-IFPEN), H. Lauron-Pernot (UPMC), E. Marceau (UPMC), A. Nicolle (IFPEN), S. Maury (IFPEN), N. Cadran (IFPEN), AF. Lamic-Humblot (UPMC)

*•• Energies Selective hydrogenation of butadiene **1-butene** $+H_2$ H_2 $+2\mathbf{H}$ **Butane** $+H_2$ $+H_2$ **Butadiene**

2-butene

- Catalyst = Supported palladium particles
- Importance of reaction kinetics on selectivity
- Limitations by transport phenomena exist
 - \rightarrow Multiscale problem

© 2012 - IFP Energies nouvelles

Will the formation of butane be quantitative ?

Briquet et al., *in preparation*

Microkinetic modeling: Assumptions

- Dynamic simulation of a gas phase CSTR reactor using a mean field kinetic model (*)
 - species:
 - 5 gas phase species + 11 surface species
 - 42 elementary steps:
 - 5 adsorption / desorption steps + 16 reversible surface reactions
 - reaction rates given by the mass action law
 - rate coefficients calculated from ab initio calculations at low H coverage (Δ_r H, Δ_r S, Δ H[#], Δ S[#]) using Eyring's law

$$k = \frac{k_B T}{h} \times \exp\left(\frac{\Delta_r G^{\neq 0}}{RT}\right) \rightarrow \text{From DFT}$$

Eneraies

full kinetic model

- no assumption of rate determining steps
- no quasi-steady state approximation

Microkinetic modeling: Simulations

Energies

Microkinetic modeling: Deriving mean field kinetic rate equations

- Approach
 - Rate limiting step depends on the operating conditions
 - H_2 adsorption
 - BD adsorption

$$r = \frac{K_1 C_{BD} C_{H2}}{\left(1 + K_2 C_{BD} + K_3 \sqrt{C_{H2}}\right) \left(C_{H2} + K_4 C_{BD} \left(1 + K_2 C_{BD} + K_3 \sqrt{C_{H2}}\right)\right)}$$

Integrating First-Principles Calculations Into CFD Simulations

Energies nouvelles

Flow around a single catalyst particle

Energies nouvelles

Alcohols conversion

Energies

- Can Can
 - Can we predict where the active sites are located ?
 - **Can we predict the evolution of selectivity as a function of conversion ?**

Aim : control of the activity and selectivity of the catalyst

Kinetic measurements, steady-state conditions

Pure γ -alumina (145 m²/g, Sasol Puralox), T_R = 200 °C

nergies

<u>3 main routes</u>

- Direct formation of propene
- Direct formation of diisopropylether
- **Conversion of diisopropylether into propene and isopropanol**

Larmier et al., ACS Catalysis, 2015, 5, 4423

Energies nouvelles

- Chemkin software
- Conditions : $T_R = 200$ °C, $P_{iPrOH}(0) = 1.5$ kPa

- 4 gas-phase species
- **15 surface species**
- **34 reactions**

**

Energies nouvelles

10

Simulation results : very good agreement with experiments

Energies nouvelles

- Marks : experimental data
- Lines : kinetic modeling ('DFT model')

Conclusions and perspectives

 Reactor simulations, including CFD aspects, can be built on the basis of quantum ab initio calculations
Proof of concept

Extend this method to other fields of refining, petrochemistry, depollution, etc.

• A research project is devoted to this at IFPEN

- Make the bridge between multiple scales smoother
 - Towards the integration of methods ?

Acknowledgements

- H. Toulhoat
- P. Raybaud
- A. Nicolle
- J.M. Schweitzer
- J. Verstraete
- A. Wachs
- A. Hammouti
- M. Rolland

- P. Sautet
- L. Briquet

K. Larmier E. Marceau A.F. Lamic-Humblot H. Lauron-Pernot

Calculation time and funding

celine.chizallet@ifpen.fr

Énergies renouvelables | Production éco-responsable | Transports innovants | Procédés éco-efficients | Ressources durables

Innover les énergies

Energies nouvelles

www.ifpenergiesnouvelles.fr

Impact of $P(H_2)$: thermodynamic aspects

Energies nouvelles

Chizallet, C.; Bonnard, G.; Krebs, E.; Bisson, L.; Thomazeau, C.; Raybaud, P., J. Phys. Chem. C 2011, 115, 12135.

Microkinetic modeling: Simulations

Inlet [H₂]/[BD] = 1 P=10 bars T = 300 K Gas Flux = $100 \text{ m}^3/\text{h}$ $N_{pd} = 333 \text{ mol.}$ Outlet gas concentration 200 180 160 140 120 100 80 B 60 40 20 0 20 40 60 80 100 0 120 Time (s) $[BD]_{out} = [H_2]_{out} = [B]_{out} = 0 \%$

[1B]_{out} = 90.8 % [2B]_{out} = 9.2 %

Energies nouvelles

1

In these conditions, full selectivity for butenes 1B dominates over 2B MASI: H* > BD* >>> ...

gas concentration (mol/m3)

Micro-Kinetic Model at High $\Theta_{_{H}}$

Energies nouvelles

Langmuir-Hinshelwood mechanism

P= 50 bar	
T = 300 K	
N _{pd} = 333 mol.	
Inlet [H]/[BD] = 1	
Gas Flux = 100 m³/	h

	P _{out} (bar)	Х _{нс} (%)	r (mol/s.kg)
H ₂	25.00	-	0.00
Butadiene	25.00	100.00	0.00
1-Butene	0.00	0.00	0.00
2-Butene	0.00	0.00	0.00
Butane	0.00	0.00	0.00

Micro-Kinetic Model at High $\Theta_{_{\rm H}}$

Energies nouvelles

Eley-Rideal mechanism

P= 50 bar
T = 300 K
N _{pd} = 333 mol.
Inlet [H ₂]/[BD] = 1
Gas Flux = 100 m ³ /h

	P _{out} (bar)	Х _{нс} (%)	r (mol/s.kg)
H ₂	0.01		-3.15
Butadiene	0.01	0.04	-3.15
1-Butene	49.11	98.21	3.09
2-Butene	0.87	1.75	0.06
Butane	0.00	0.00	0.00

10 nm

5 nm

II – Modélisation moléculaire

© 2012

2 – Surface (100) – Formation du propène

2 – Surface (100) – Formation du propène

2 – Surface (100) – Formation du propène

Molecular-scale modeling

• (110) facets – partially hydrated ($\theta_{OH} \approx 9.0 \text{ OH.nm}^{-2}$)¹ Lewis acidic Al

- Propene formation
 - Lewis mechanism: E2, $\Delta_r H^{\ddagger} = 158 \text{ kJ.mol}^{-1}$
 - **Brønsted mechanism:** $\Delta_r H^{\ddagger} > 200 \text{ kJ.mol}^{-1}$
- **Ether formation**
 - Lewis mechanism : $S_N 2$, $\Delta_r H^{\ddagger} = 140 \text{ kJ.mol}^{-1}$
 - Brønsted mechanism : not possible

Rate constants (110) = $\frac{\text{Rate constants (100)}}{1000}$

(110) facets less reactive than (100) facets

Energies nouvelles

¹ Raybaud et al. Journal of Physics - Condensed Matter, 2008

(110) =

Molecular-scale modeling

• One common active site on the (100) surface for both reactions

Comparison with experimental results ($\Delta_r H^{\ddagger}$ in kJ.mol⁻¹)

Reaction	Active facets	Modeling		Experiments*
		$\Delta_r S^{\ddagger}$	$\Delta_r H^{\ddagger}$	$\Delta_r H^\ddagger$
Propene formation	(100)	-8	126	128 ± 5
Ether formation	(100)	-36	112	118 ± 5

Propene formation activation entropically favored

* Conversion < 10 % Temperature : 165 to 210 °C Initial *i*PrOH partial pressure : 1.5 kPa Flow rate: 60 cc.min⁻¹

Energies nouvelles

Energies