
6/24/15 | PAGE 1

Future of IO: a long and winding road

Philippe DENIEL (philippe.deniel@cea.fr)

CEA, DAM, DIF, F-91297, Arpajon, France

mailto:philippe.deniel@cea.fr

PAGE 2

Yesterday

PAGE 3

Small local FS on Cray machines
Cray machine were MPP machines
Logically equivalent to a single node with many cores and a large memory
Storage was local and attached to the MPP machines

All Cray machines at TERA produced 80TB in their whole life

Then came SMP clusters
Many small machines federated by a high performance network to build a big one
File System is accessible consistently from all nodes in the cluster
Parallel File System were born with SMP

Volume stored (early 2000): a few petabytes
Production (early 2000): ~100TB/year

... and even bigger SMP clusters
SMP clusters prove to be reliable supercomputers
They become bigger and bigger and stored more and more data
Lustre and GPFS became de facto standards

Volume stored : ~40PB
Production ~6PB/year

A look at the rear-view mirror

PAGE 4

STOREDIR@TGCC: Volume (from last COMUT)

PAGE 5

STOREDIR@TGCC: inodes (from last COMUT)

PAGE 6

Today

PAGE 7

A data centric architecture

GL-TGCC
Fast access to data,
Gateway to files
post-processing

ST-TGCC
Long term storage
Keeps simulation results

PAGE 8

LUSTRE@TGCC

Parallel Filesystem
Developed by Intel Data Division(formerly WhamCloud), with support form international
labs and organizations
•OpenSource Product. Half of Top500 machines use it
•CEA is part of the development.
Components
•MGS (Management Server)
•MDS (Metadata Server)
•OSS (Object Storage Server)
•Routers
•Clients
GL-TGCC
•Two filesystems : work and store
•Interconnexion Infiniband QDR
•1x metadata cells

2x MDS, 1x DDN SFA10K
•10x cells I/O

4x OSS, 1x DDN SFA10K

PAGE 9

GL-TGCC ARCHITECTURE (data-centric)

6/24/15| PAGE 9

PAGE 10

Large FS are cool but won't scale forever

Keeping Large FS consistent is expensive and complex
The complexity grows drastically as the number of stored object increases
There is a limit to the number of clients a server or a cluster of servers can manage
File systems naturally creates dependencies between objects

hardlink makes it possible for a file to exists in more than one directory
Symlink’s usage can result in “file systems” mazes

Scalability issues
Todays feedback shows that filesystems with billions of objects are unstable
Such a creature is hard to administrate with Today’s technology

Big Files are beautiful, small ones are not
Small Files Problem is definitely the first plague of Egypt HPC
MPI makes program running on ~1000 to ~100 000 nodes a reality
Each node can produce per-process files
Interesting data resides in all files

File are spread on many different resources with an atomic, unavoidable
cost for accessing each of them
Situation becomes nightmarish when tapes are involved
- accessing 1000 files means mounting dozens of tapes => long delays

PAGE 11

POSIX sucks

Locks
POSIX was born in a world with no threads, only processes, treated as atomic lock owners

Thread 1 has a lock
Thread2 requests another lock
- No new lock is created
- Lock owned by Thread1 is modified by Thread2's request

All locks held by a process are dropped any time the process closes any file descriptor that
corresponds to the locked file, even if those locks were made using a still-open file descriptor.

POSIX does not fit parallel file systems
The same structure mixes different types of metadata

“last offset in file” (aka st_size) is a pure file metadata
“space used” (aka st_blocks) is a storage related metadata
Modern FS handle storage metadata separately

POSIX “Exactly Once Semantics” (EOS) do not fit distributed parallel FS

Corner cases
POSIX is full of “corner cases” where actual behavior is not what people would expect
POSIX TRIVIA: What's happening if you call rename() with both file arguments referring to the
same inode ?

PAGE 12

From Today
to 2020

PAGE 13

Manycore processors => reduction of ratio memory/core

The operating system will have less memory buffers for its
own needs

Less room in the OS for the file systems
Even the TCP/IP network stack may become too expensive and be replaced by lower
level but faster paradigm (like RDMA)

Kill the bottleneck!!
Need for mechanisms to manage larger data without generating bottlenecks
The former approach used in SMP is not valid anymore and would lead to an explosion
of the number of clients

 IO Challenges for 2020 : the IO Proxy

PAGE 14

Data View: Study's closer look at data

Data usage of compute clusters

In most cases, a large machine run many studies (sets of correlated
jobs) at the same time.
Each study has its own set of required input and produces its own set
of data.
It's useless to expose everyone's data to everyone, just show what's
required

The Data View is a consequence of the notion of Study
We can define data views for study
Each view contains subset of data to be used by the study, and has related
areas to store results
The data view is tied to the study
Each study is agnostic to the others
Intersection of different data views is made of read-only data

PAGE 15

Data View means IO Proxy

The data view will be served by a dedicated IO Proxy
The proxy is the only “data view provider” to the study

The proxies are the only actual clients of storage resources

The proxy is the natural place for optimization based on hints provided by upper layers
(IO Libraries and simulation code)

Impact on data cache policies (keep only what is tagged as essential)
Impact on metadata cache policies (do not flush what will be used soon)

PAGE 16

IO Proxies kill bottlenecks

The proxy algorithm is a bottleneck killer
Proxy brings more flexibility to clustered architecture
IO streams can be controlled at the Proxy's level

The proxy approach has been successfully used in
situations involving lots of clients

The HTTP across the Internet makes intensive use of proxies, most of them invisible to
the end user (your web browser at your workstation)
Sending mail over the Internet goes through multiple SMTP proxies

PAGE 17

IO proxies inside future architecture

LUSTRE
Compute data

NFS
Shared with
workstations

IO Proxies

MIC Nodes

Compute Cluster

Storage servers

MIC Nodes MIC Nodes MIC Nodes

IO Proxies

PAGE 18

IO Proxies

IO Proxies are internal to the future compute machine
Single path for computes nodes to access data

Lustre Filesystems
NFS remote servers

IO Proxies as “fuse”
A single “evil” command can easily collapse a storage system
A “rogue study” will only mess its own proxy

Use of internal metrics will help identifying toxic behaviors
In such a case, the proxy would slow pause, pause or even stop to protect the
back-end

A major failure on the IO Proxy will crash it, preventing the trouble to contaminate the
whole machine

PAGE 19

Efficient networking: the RDMA transport layer

RDMA: Remote Direct Memory Access

A machine allows another to write directly in a few
windows in its own memory

Simpler implementation compared to TCP/IP
A de facto standard via Infiniband, iWARP and RoCE technologies
LAN dedicated but fast network model
Bypass several OSI layers to optimize performances

PAGE 20

File Server's protocol: the 9P Protocol

IO Proxies will export data to compute nodes via the 9P
Protocol

9P was originally designed by Bell Labs for Plan9
A standardized protocol
A living protocol
- Several enhancements in the protocol since its birth
- Latest is 9p.2000L (designed for Linux)

Through its design, 9P fits IO Proxy's
requirements

9P is a very lightweight protocol
9P is fast to interpret

Use little-endianess making XDR-like marshaling unnecessary
9P is buffer oriented, which fits well RDMA transport
9P make zero-copy based implementation easy and requires less memory
9P has all you need to implement full POSIX semantics
9P is quite complete

Distributed flocks are supported
Extended attributes are supported

PAGE 21

New storage related API

File private locks
A new model of lock (non compliant to POSIX), enthusiastically adopted by the
community. Integration in the kernel’s mainline is under progress
The file owns its locks
Locks are revoked as the last opened file descriptor is closed
Compliant with process using many threads

EIOWG/E10
The Exascale IO Work Group tries to define new models and API for exascale
compatible IO
EIOWG’s creed: Database had big successes because they were well standardized,
let’s do the same with data storage
The Work Group tries to bring up new model and new API to comply with exascale’s
needs for storage accesses.

The File System: a model from the Past
File System will probably continue to exists as a way a user can see and manage its
information

File system structure and dependences won’t be present from back to top
File system will be kept inside larger and more adapted objects
New paradigms to be created to replace file systems

PAGE 22

Beyond 2020

PAGE 23

Storage blobs: data accessed via an
already known key
Data are kept in weakly typed containers :
the storage blobs

Containers and independent, billions of
them exist, and they can be easily
distributed

Bijective addressing clef => content

2020: A (storage) space odissey

Today’s models keep data in file systems
Structure based on files and directories:
• Strong dependencies result of this structure
• The distribution of such a structure is complicated
• Addressing by path is inconsistent (you can

rename)

Analogy : Youtube videos are “ video blobs” acessed in a key/value way

Example : Etienne Klein’s video on the breach of symmetry is referenced by key “R-kLlXKjgnI”.
its URL is http://www.youtube.com/watch?v=R-kLlXKjgnI

PAGE 24

Blobs are « storage baskets »

Blobs are polymorphic object, unaware of their contents. They
can be stored on various media: tapes, disks, flash memory,
SSDs…

Their simple structure makes eases
•Replication across different systems
•reliability

Each blob is addressed by a unique key stored in a
massively distributed database

Bijective relationship in-between a key and a blob
•This very simple schema removes constraints

Needs a specific database
- with large DB storage

- massively distributed

- fault tolerant / redundant

A simple and innovative approach
•To be used intensively in HPC environment
•Generic and usable in enterprise marker (Cloud,
Big Data)
•Innovative use of the media
•Strongly correlated with new flavors of Databases
(Hadoop)

Blobs in action

Blob Id=45AE74
(primary copy)

Blob Id=45AE74
(secondary copy)

Blob Id=45AE74
(backup)

Blob inventory
Request

PAGE 25

In a HPC context

Dual speed storage

The high performance storage used by supercomputer to
primarily produce data is expensive and has a limited size.

Data are stored in blobs for
•Free expensive resources
•Secure the data

Store more, for less money
•Blobs rely on inexpensive media
•They provide massive storage

Storage Blobs to replace HSMs/Backups

A disk to tape blob migration is quite simple.

Blobs are not interdependent, they can be accessed
concurrently
• Better service for the end user
• Better Volume/Throughput ratio

Beyond HPC

Collaborations

A versatile model that fits many domains known as big
data producers (biology, climatology, astrophysics,
medecin, computer simulation)

Fits the expected explosion of numerical storage in
scientific and non scientific domains

A model living in the Open Source World

Blobs will rely on Open Source products

Collaboration to be set up with the industry (storage
clouds) and Open Source community Collaboration
(Hadoop).

A model with strong correlation to Big Data

Why storage blobs are cool

PAGE 26

Questions ?

Direction des applications militairesCommissariat à l’énergie atomique et aux énergies alternatives

Centre DAM-Ile de France | 91297 Bruyères-le-Châtel Cedex

T. +33 (0)1 69 26 40 00 | F. +33 (0)1 69 26 70 86

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

	Future of IO: a long and winding road
	Yesterday
	A look at the rear-view mirror
	STOREDIR@TGCC: Volume (from last COMUT)
	STOREDIR@TGCC: inodes (from last COMUT)
	Today
	A data centric architecture
	LUSTRE@TGCC
	GL-TGCC ARCHITECTURE (data-centric)
	Large FS are cool but won't scale forever
	POSIX sucks
	From Today to 2020
	IO Challenges for 2020 : the IO Proxy
	Data View: Study's closer look at data
	Data View means IO Proxy
	IO Proxies kill bottlenecks
	IO proxies inside future architecture
	IO Proxies
	Efficient networking: the RDMA transport layer
	File Server's protocol: the 9P Protocol
	New storage related API
	Beyond 2020
	2020: A (storage) space odissey
	Blobs in action
	Why storage blobs are cool
	Questions ?
	Direction des applications militaires

