ANALYSE DE GRAPHES SUR GPU

11^e Forum Teratec - 2016 Alexandre Fender afender@nvidia.com

OVIDIA.

Accelerated graph analytics

nvGRAPH, presentation and performances

Research in spectral graph analysis

Graph Analytics

Understanding relationships among high volumes of connected data

Social Network Analysis Recommender systems Parallel computing Cyber security/Network analytics Natural language processing Neural networks

Getting more attention

Accelerated graph analytics

Connecting the dots

Graphs as Matrices

	1	2	3	4	5	6
1	0	1	1	0	0	0
2	0	0	0	0	0	0
3	1	1	0	0	1	0
4	0	0	0	0	1	1
5	0	0	0	1	0	1
6	0	0	0	1	0	0

The input Twitter data set (2011)

		1e+06	"plo.dat"using 1.2
Number of vertices (n)	41,652,230	<u>کو</u> 100000	
Number of edges (nnz)	1,468,365,182	2 Jack 10000	
Sparsity (nnz per row)	35.25	uu) X000	
Minimum nnz per row	0	l loo	
Maximum nnz per row	770,155	d səgə 10	
Standard deviation	354		
		Ţ	0 vertex identifier 4.5e

The largest vertex (row) has almost 1 million edges 50% of vertices (rows) have less than 5 edges (non-zero)

nvGRAPH

nvGRAPH Accelerated Graph Analytics

Part of the CUDA Toolkit 8.0, with a C API.

Algorithms : Pagerank, Semi-ring SpMV, SSSP, SSWP, Graph extraction

Solve graphs with up to 2 Billion edges on a single GPU (M40-24GB)

Efficient on networks with power law distribution

Pagerank

Measure the importance of elements based on the overall topology

Iterative approximation of the largest eigenvector x_{max}

G : Google matrix H : Markov chain transition matrix Method : Power Iteration

Semi-Ring Matrix Vector Multiplication

Overload of Mat-Vec operators

 $y = \alpha \otimes A \otimes x \oplus \beta \otimes y$

Where \otimes and \oplus are binary operators satisfying semi-ring properties

$$\mathbf{y} \equiv \mathbf{\alpha} \otimes \mathbf{A} \otimes \mathbf{x} \oplus \mathbf{\beta} \otimes \mathbf{y}$$

SSSP example

Tropical semiring (min, +)

Addition of *a* and *b* is *min* (*a*,*b*)

Multiplication is regular addition

Elementwise Operations in row *i*: $y = min(A^T_{ij_0} + x_{j_0}, A^T_{ij_1} + x_{j_1}, ...)$ SSSP formula becomes : $x_{i+1} = min(A^Tx_i, x_i)$

Semi-rings Examples

SEMIRING	SET	PLUS	TIMES	<u>0</u>	<u>1</u>
Real	\mathbb{R}	+	*	0	1
MinPlus	$\mathbb{R} \cup \{-\infty,\infty\}$	min	+	∞	0
MaxMin	$\mathbb{R} \cup \{-\infty,\infty\}$	max	min	-00	00
Boolean	{0,1}	V	٨	0	1

nvGRAPH's performances

General SPMV-MP performance

The entire Florida Sparse Matrix Collection: 4.2K datasets (K40, fp64)

Higher correlation of runtime to problem size

Lower correlation of FLOPS to rowlength variation

Merrill and Garland. Merge-based Parallel Sparse Matrix-Vector Multiplication using the CSR Storage Format. Tech. Rep. NVR-2015-002, NVIDIA Corp. 2015

15 📀 nvidia

Pagerank performance

Large real networks with power law distribution

Dataset	Vertices	Edges
Twitter	41652230	1468365182
Live Journal	5363260	79023142
ctiPatents	3774768	16518948
web-BerkStan	685230	7600595
web-Google	916428	5105039
Wiki-Talk	2394385	5021410

Tesla M40 damping factor = 0,85

Pagerank performance

How does it compare to others?

Speedup from 2x to 20x 1 GPU (Tesla M40) vs 2 CPU (32 cores)

Dataset : Twitter, damping factor = 0,85

nvGraph on Tesla M40

GraphMat and Gallois on 2 socket, 32 core, Xeon E5-2698 v3@2.3GHz 3.6GHz Turbo (Haswell) HT off

Internal benchmark

See also:

GraphMat: High performance graph analytics made productive, Narayanan Sundaram et. al., Tech. Rep. INTEL Corp, 2015

Research in spectral graph analysis

More advanced algorithms for spectral analysis Ongoing research

Implicitly restarted Krylov methods

Fender, Emad, Eaton, Petiton. 2016. "Accelerated Hybrid Approach for Spectral Problems Arising in Graph Analytics." Procedia Computer Science 80:2338-47.

Spectral partitioning /clustering

Naumov and Moon. Parallel Spectral Graph Partitioning. Tech. Rep. NVIDIA Corp. 2016

Thank you! nvGRAPH is freely available as part of CUDA 8.0 toolkit

www.nvidia.com/getcuda

EA feedback

"Shows lots of promise, looks like it is going to be a great library"

"Pagerank's performance is awesome"

"Looking forward keep using it"

ANALYSE DE GRAPHES SUR GPU

11^e Forum Teratec - 2016 Alexandre Fender

afender@nvidia.com

OVIDIA.