
DISTRIBUTED DATA PROCESSING USING
SPARK IN RADIO ASTRONOMY

Panos Labropoulos
Bright Computing, Inc.

Sarod Yatawatta
ASTRON

Who are we?

 Panos Labropoulos
 Works at Bright Computing
 HPC, accelerators, high-speed interconnects
 PhD Radio Astronomy, University of Groningen

 Sarod Yatawatta
 Works at ASTRON
 Signal and Image processing
 PhD Electrical engineering, Drexel

Outline
 Basics of radio interferometry
 Scientific motivation
 Why is Spark relevant?
 Two case studies: calibration and imaging

The visible sky: Thermal emission processes

Cygnus A

Cassiopeia A

Moon Sun

The radio sky

Why radio?
 Thermal Radiation
 Synchrotron Radiation

 Relativistic e- in magnetic fields
 Bremstrahlung

 “Breaking Radiation” e- /ion collisions
 Maser

 Microwave Laser e- oscillations in molecular clouds
 Atomic Transitions (emission spectra)

 Hydrogen e- spin flip

Tools required: antennas, receivers
(e.g. voltage amplifiers, ADCs, computers)

Similar principles to optical astronomy – different wavelengths

Basic characteristics of a telescope
 Oldest telescope: human eye

 Human pupil: 0.5 cm diameter, 0.05 deg. Resolution at λ=600 nm
(yellow)

 Radio telescope: 100m diameter, 1.4 deg. resolution at λ=2m
 2.8 km diameter required for same resolution as human eye
 250 km dimeter required for same resolution as an optical telescope

Angular resolution and sensitivity proportional to size

Constructing a 250km parabolic dish is simply not feasible

Use smaller antennas and add-up signals using a computer

How many antennas? How big?
Intensity follows an inverse square law

• Source 3 times further away become 9 times fainter
• Size of telescope depends on distance at which we wan

t to look objects at. 10.000 sq. m. VLA

10x further -> 100x bigger
1 sq. Km

Measurement process

90 degx

s s

b

multiply
average

The path lengths
from sensors
to multiplier are
assumed equal!

Geometric
Time Delay

Rapidly varying,
with zero meanUnchanging

2-D FT of the sky’ s bri
ghtness distribution

Examples of 1-Dimensional Visibilities
• Simple pictures are easy to make illustrating 1-dimensional visibilities.

Brightness Distribution Visibility Function
• Unresolved

Doubles

• Uniform

• Central
Peaked

Earth rotation synthesis
 An interferometer with N antennas has N (N -1) / 2 “baseline” pairs
 Real interferometers are built on the surface of the earth – a rotating platform. From the

observer’s perspective, sources move across the sky, but from the source’s perspective the
antenna array is rotating in such a way that the baseline pair points form tracks over time

 u-v tracks have gaps: incomplete sampling of the 2-D transform / missing information

Antenna layout

360 min

Baseline pairs layout

amplitude phase

Example: synthesis image

Example: synthesis image

Square Kilometer Array
 100x more sensitive, 1,000,000x faster imaging
 Up to 5 sq.km collecting area and 3500km baselines
 Sub-arcsecond resolution, large field-of-view
 3 types of antennas, 2 locations, a single observatory
 No mechanical steering for low- and mid-frequency antennas, multiple beams
 Will address key questions of astronomy, cosmology and physics
 Ambitious IT project. Probably will be the first production exascale system
 Will be generating several exabytes of processed data per year
 Builds up on techniques developed in Europe
 Major HPC facility
 UK, RSA, AUS, NZ, Canada, China, NL, Germany, Italy, India, Sweden collaboration

Five Key Science Areas for the SKA
Topic Goals

Probing the Dark Ages
1. Map out structure formation using HI from the era of

reionization (6 < z < 13)
2. Probe early star formation using high-z CO
3. Detect the first light-emitting sources

Gravity: Pulsars & Black Holes
1. Precision timing of pulsars to test theories of gravity

approaching the strong-field limit (NS-NS,
NS-BH binaries, incl Sgr A*)

2. Millisecond pulsar timing array for detecting long-
wavelength gravitational waves

Cosmic Structure
1. Understand dark energy [e.g. eqn. of state; W(z)]
2. Understand structure formation and galaxy

evolution
3. Map and understand dark matter

Cosmic Magnetism
Determine the structure and origins of cosmic
magnetic fields (in galaxies and in the intergalactic
medium) vs. redshift z

The Cradle of Life
1. Understand the formation of Earth-like planets
2. Understand the chemistry of organic molecules and

their roles in planet formation and
generation of life

3. Detect signals from ET

+ serendipitous
discoveries

Site selection: determined by man-made interference

The majority of the radio spectrum has
been allocated

Only available radio-quit sites: south Africa and western Australia
(or the back side of the Moon)

Signal corruptions
 Astronomical radio signals are very weak
 Calibration is the name of the game
 Several sources of corruption

 Ionospheric Faraday Rotation/phase
 Antenna/station beam patterns
 Receiver gain and phase errors

 If not tackled, they will limited the sensitivity and therefore
the science

SKA data rates

16 Tb/s 4 Pb/s

24 Tb/s
20 Gb/s

20 Gb/s

1PB/s

Science data processor pipeline

10 Pflop
1 Eflop

100 Pflop10 Tb/s 200 Pflop
10 Eflop

…Incoming
Data from
collectors

Switch
Buffer store

Switch

Buffer store

Bulk Store

Correlator
Beamformer

UV
Processor

Imaging:

Non-Imaging:

CornerTurning CourseDelays Fine F-step/Correlation VisibilitySteering ObservationBuffer GriddingVisibilities Imaging ImageStorage

CornerTurning CourseDelays Beamforming/De-dispersion BeamSteering ObservationBuffer Time-seriesSearching Searchanalysis Object/timingStorage

HPC science
processing

Image
Processor

1000Tb/s 1 Eflop10 EB/y SKA 2
SKA 1 1 EB/y 50 PB

10/1 TB/s

30x more computationally intensive
(deconvolution, gridding, prediction, FFTs)
90% of power consumption

Imaging and calibration determines
problem size

Current data reduction scheme
 Software developed in the 80s/90s
 Fortran libraries
 Minimal use of multi-cores/No use of accelerators
 Design for interactive processing of single dataset/Support for scripted batched processing
 ipython/custom REPL
 Will not work for SKA

What is Spark?

Efficient
General execution

graphs
In-memory storage

Usable
Rich APIs in Java, Scala, Python
Interactive shell

Fast and Expressive Cluster Computing
System Compatible with Apache Hadoop

Key Concepts

Resilient Distributed
Datasets
 Collections of objects spread across a cluster, stored

in RAM or on Disk
 Built through parallel transformations
 Automatically rebuilt on failure

Operations
 Transformations

(e.g. map, filter, groupBy)
 Actions

(e.g. count, collect, save)

Write programs in terms of transformations on
distributed datasets

Working With RDDs
RDDRDDRDDRDD

Transformations
Action Value

linesWithSpark = textFile.filter(lambda line: "Spark” in line)

linesWithSpark.count()
74
linesWithSpark.first()
Apache Spark

textFile = sc.textFile(”SomeFile.txt”)

Example: Log Mining
Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)
errors = lines.filter(lambda s: s.startswith(“ERROR”))
messages = errors.map(lambda s: s.split(“\t”)[2])
messages.cache()

Block 1Block 1

Block 2Block 2
Block 3Block 3

WorkerWorker

WorkerWorker
WorkerWorker

DriverDriver

messages.filter(lambda s: “mysql” in s).count()
messages.filter(lambda s: “php” in s).count()
. . .

tasks
results

Cache 1

Cache 2
Cache 3

Base RDDBase RDDTransformed RDDTransformed RDD

ActionAction

Full-text search of Wikipedia
• 60GB on 20 EC2 machine
• 0.5 sec vs. 20s for on-disk

Scaling Down
69 58

41 30

12

0
20
40
60
80

100

1 2 3 4 5Exe
cut

ion
 tim

e (s
)

% of working set in cache

Software Components
 Spark runs as a library in your program (1 instance

per app)
 Runs tasks locally or on cluster

 Mesos, YARN or standalone mode
 Accesses storage systems via Hadoop InputFormat

API
 Can use HBase, HDFS, S3, …

Your applicationYour application
SparkContext

Local
threads

Cluster
manager
Cluster

manager
WorkerWorker
Spark executor

WorkerWorker
Spark executor

HDFS or other storageHDFS or other storage

Task Scheduler
 General task

graphs
 Automatically

pipelines functions
 Data locality

aware
 Partitioning aware

to avoid shuffles
= cached partition= RDD

join
filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:
F:

map

Advanced Features
 Controllable partitioning

 Speed up joins against a dataset
 Controllable storage formats

 Keep data serialized for efficiency, replicate to multiple nodes, cache on disk
 Shared variables: broadcasts, accumulators
 See online docs for details!

Why Spark
 Power consumption will be the most important differentiator –minimize movement

 supercomputer in the middle of the desert
 data locality – automatic work placement
 In-memory processing

 Iterative algorithms / Pipelines that enable piggybacking
 New algorithms that have modest inter-process communication

 Not all features of MPI are required -> Simple collectives: broadcast, aggregation
 Can MPI handle the increased pararellism available on exascale systems?

 Fault tolerance
 Current MTBF: 2 out of 600 nodes per week -> 300 nodes per week for SKA
 MPI applications need to be designed for fault-tolerance/checkpointing

 Straggler mitigation
 Friendly APIs RDD

Fault Tolerance

 Bright cluster manager
 HDFS/Lustre/Ceph support
 Early warning via e-mail, SMS etc and automate actions
 Single plane of glass: monitor nodes, switches, PDUs, multiple clusters
 Hadoop/Spark-specific metrics and healthchecks
 Simple Python/REST/C++ APIs

Types of processing:
• Signal detection/extraction
• Object classification
• AGN spectral classification
• Time series
• Clustering
• LSS
• Class discovery
• RFI mitigation
• Transient detection
• Deconvolution

autoScan algorithm
Goldstein et al 2015

Types of algorithms:
• ANNs (this talk)
• Decision trees
• SVM
• Nearest neighbor
• Expectation maximization
• Non-linear optimization

Chapman et al 2012

How is data processed
o Datasets contain multiple sources of information
• Ionosphere, lightning, cosmic rays, ET?, interference, compact and extended astronomical sources
• Different algorithms for each
o Multidimensional data: spatial, time, frequency, polarization
o Pipeline should be able to chain different algorithms in order to extract as much information as possible with mini

mal data movement

Case study: Calibration

Case study: Calibration

Case study: Calibration
Data distributed over a network: all existing
calibration algorithms work independently

We want a unified solution, collecting information from
all data

Where ܤ௙೔ܼ is a smoothness constraint along
time, space and freqency
Does not work in practice: data does not fit in
memory, model not accurate enough to
parametrize

Case study: Calibration

• Consensus optimization: exploit smoothness of systematic
errors to find a unified solution

• Use of a fusion center is not essential, but easier
• Communication overhead is little, more important is

robustness and fault tolerance (can throw away lost data).
• Large rho makes problem convex

1. INITIALIZE
• Read data as Breeze BlockMatrix
• P sub-problems, each with its own copy of Z,Y

2. REPEAT until convergence or N_max_iter
1. Each worker solves:

2. Globally calculate average:

3. Broadcast Z to P sub-problems
Zb = sc.broadcast(Z)

4. Locally calculate Lagrange multiplier

Case study: Calibration

traditional distributed difference

• Almost linear caling with number of antennas
• Broadcasted data is 10x less (4KNP) than actual data

(ସ்௉ಿ(ಿషభ)
మ)

• Can be further reduced with:
o Use frequency multiplexing
o Broadcast data only to neighbors

Case study: Imaging
1. INITIALIZE

• a residual image set to the Fourier Transform
of the visibilities

• var row: Int = _, var col: Int = _
• (row , col, flux) MAX= tuple(l: Int, m: int)
• a Clean Component list to empty

2. WHILE (img.getNoise < THERMAL_NOISE)
1. (row , col, flux) = img.getMax
2. resimg = resimg – g * PSF.imshift(l,m,size)
3. CCList.++ = (row , col, flux)

Poor man’s Compressed Sensing (matching pursuit)

Variations:
•Clarke: subtract multiple components in on iteration (~ StOMP)
•Cotton-Schwab: Work in measurement space instead of image space

In the absence of noise, CLEAN is equivalent to a least squares fit of sinusoids to visibilities

• linear scaling
• fits in memory
• easy to implement
• gridding/FFT can be offloaded to GPU via JNI
• Does not work well with extended sources, still useful for catalogs a

nd calibration

42

Imaging
 The “dirty” image is the convolution of the true underlying image with the PSF, corrupted by Gaussian random

noise

ି૚

Convolution Theorem

This pseudo-inverse cannot
be computed in the presenc
e of corruptions

࢞ = ૚ିࡲ ૚
(࢑)ࡲ

(࢑)ࡲ ૛
(࢑)ࡲ ૛ + ૚ିࡾࡺࡿ ∗ ࢟

Tikhonov Regularization
High noise strong → regularizatio
n

Imaging

43

The previous kernel can be transformed as a sum of 1D filters:

݇ା ∗ ݕ = ܵ ݇ା ∗ ݕ = ෍ ௝ݑ௝ߪ ∗ ௝்ݒ) ∗ (ݕ

௝

Goal: use the following feed-forward, multi-layer convolutional neural network and train it to
minimize

݄௟ = ቐ
, ොݕ ݈ = 0

tanh ௟ܹ ∗ ݄௟ିଵ + ܾ௟ିଵ
ଷܹ ∗ ݄ଶ

, ݈ ∈ 1,2

Initialize W from ݇ା or from random, uniform distribution

~ ெே௉ொ
ଶெே(௉ାொ) faster

Astrophysical sources are complication, but most radio sources have simple shapes, and occasionally irregular:

Use high SNR images from the VLA FIRST survey supplemented with simulated sources (elliptical Gaussians,
points sources, narrow gaussians) to construct a training pair set of 10.000 64x64 images

uncorrupted convolved noise added recovered

Challenges
 Spark is feature already but some useful components are not yet available

 JNI
 Analytical implementations needed
 Hard to debug and argue about performance sometimes
 Application specific formats
 Accelerators such as GPUs are almost mandatory – JNI

Conclusions
 New generation interferometers will enable us
 The availability of HPC (exascale) resources is a prerequisite
 Energy cost will be the decisive factor when it comes to design
 New hardware architectures require new algorithmic approaches
 Is Spark the answer? To early to answer but maybe

• Distributed algorithms not only address computational issues, but are more robust and accurate as well
• Consensus calibration is the best way forward
• Spark offers many of the tools need to construct radio astronomical pipelines

