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Who are we?

» Panos Labropoulos » Sarod Yatawatta
» Works at Bright Computing » Works at ASTRON
» HPC, accelerators, high-speed interconnects » Signal and Image processing
» PhD Radio Astronomy, University of Groningen » PhD Electrical engineering, Drexel




Outline

Basics of radio interferometry

>

» Scientific motivation
» Why is Spark relevant?
| 2

Two case studies: calibration and imaging
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The radio sky

Cassio'peia A

A map of the radio skyvin galactic coordinates combining data from the Molonglo and Parkes telescopes in Australia, the Very Large Array in New Mexico, Jodrell Bank MKI in the UK and the 100m in Effelsburg, Germany.
Compilation by: D. Jacobs, 2013 - Arizona State University, Low Frequency Cosmology




Why radio?

Penetrates Earth's N

Atmesphere?

» Thermal Radiation
» Synchrotron Radiation

Radiation Type Radlo Microwave Infrared Visible  Ultraviolet  X-ray  Gamma ray

» Relativistic e in magnetic fields Wavelengh () o whooesart w0t g
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Tools required: antennas, receivers
(e.g. voltage amplifiers, ADCs, computers)
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Similar principles to optical astronomy - different wavelengths
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Basic characteristics of a telescope

Angular resolution and sensitivity proportional to size

» Oldest telescope: human eye

» Human pupil: 0.5 cm diameter, 0.05 deg. Resolution at A=600 nm

(yellow) A
Y =122—
D

» Radio telescope: 100m diameter, 1.4 deg. resolution at A=2m
» 2.8 km diameter required for same resolution as human eye

» 250 km dimeter required for same resolution as an optical telescope

Constructing a 250km parabolic dish is simply not feasible
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Use smaller antennas and add-up signals using a computer




Intensity follows an inverse square law

Source 3 times further away become 9 times fainte
Size of telescope depends on distance at which we

t to look objects at.
10.000 sqg. m. \/LA

~300/000years:
“Dark ages” begin

~400 million years: Stars
and nascent galaxies form

~1 billion years: Dark ages end

~9.2 billion years: Sun, Earth, and solar system have formed

~13.7 billion years: Present



Measurement pProcess

S
Geometric
Time Delay
T, = b-s/c

The path leng

V, = Ecos[o(t- Tg)]| V, = E cos () from sensors
to multiplier a
/ I assumed equal
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Examples of 1-Dimensional Visibilities

e °* Unresolved

Simple pictures are easy to make illustrating |-dimensional visibilities.
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Earth rotation synthesis
>

An interferometer with N antennas has N ( N -1 ) / 2 “baseline” pairs

» Real interferometers are built on the surface of the earth - a rotating platform. Fr
observer’s perspective, sources move across the sky, but from the source’s perspecti

antenna array is rotating in such a way that the baseline pair points form tracks over

u-v tracks have gaps: incomplete sampling of the 2-D transform / missing information
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Example: synthesis image




SOUARE KILOMETRE ARRAY K.i lo m ete r A r ray

100x more sensitive, 1,000,000x faster imaging

Up to 5 sq.km collecting area and 3500km baselines

Sub-arcsecond resolution, large field-of-view

3 types of antennas, 2 locations, a single observatory

No mechanical steering for low- and mid-frequency antennas, multiple beams
Will address key questions of astronomy, cosmology and physics

Ambitious IT project. Probably will be the first production exascale system
Will be generating several exabytes of processed data per year

Builds up on techniques developed in Europe

Major HPC facility

UK, RSA, AUS, NZ, Canada, China, NL, Germany, Italy, India, Sweden collaboration

vV V.V vV vV vV v v v v Y
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SOUARE KILOMETRE ARRAY

Five Key Science Areas for the

KSP KSP Description Frequency Range FoV Sens-  Survey Resn. Base- Dyn. Poin.
Topic Goals D GHz itivity ~ Speed line g?i"vg‘: Driver
. . 01031030 10 30 d miK ‘m*K* mas  Km
1. Map out structure formation using HI from the era of 2 s _ _— . __
Probing the Dark A reionization (6 < z < 13) . € Dark Ages §
robing the Dark Ages 2. Probe early star formation using high-z CO 13 EoR [ =30 !
s s b First Metals — 0003 15000 50 125
3. Detect the first light-emitting sources N S —— || 0000 0 A0 .
iei T : : 2 Galaxy Evolution,
1. Precision timing of pulsars to test .thGOI.'le'S of gravity Coathology.& Bk
approaching the strong-field limit (NS-NS, Energy
Gravity: Pulsars & Black Holes NS-BH binaries, incl Sgr A*) 2a"  Dark Energy - 6x10° 5
2. Millisecond pulsar timing array for detecting long- 26" Galaxy Evolution 20,000 1x10° 10
wavelength gravitational waves 2¢  Local Cosmic Web g 210" 05
1. Understand dark energy [e.g. eqn. of state; W(z)] s Goumi Negeetian
- 3a”  Rotation Measure —_ 2x10° 10-30 -~
. 2. Understand structure formation and galaxy Sky
Cosmic Structure luti
evolution 3 Cosmic Web 1x10® 5 -
3. Map and understand dark matter 4 GR using Pulsars &
Black Holes
Determine the structure and origins of cosmic Search —_ 1x10° <1
Cosmic Magnetism magnetic fields (in galaxies and in the intergalactic 42" Gravitational Waves -_— - >15,000 1 200 -
medium) vs. redshift z 4  BHSpin _— 1 10,000 ) .-
- - 4ct  Theories of Gravity e o [ >15,000 1 200 -
1. Understand the formation of Earth-like planets s T
2. Understand the chemistry of organic molecules and 5a'  Protoplanetary Disks A <0° 10,000 2 1000
he Cradle of Life their rol.es in p!anet formation and s Prebioiic Moleculss 0.5:4 10,000 100 60
generation of life e sem )
3. Detect signals from ET -
6 Exploration of the Large Large Large
Unknown

THeadline science, see Section 3.2




Dark Energy
Accelerated Expansion

Afterglow Light
Pattern  Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.

Inflation

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

NASA/WMAP Science Team




Site selection: determined by man-made interference

......

UNITED

STATES

FREQUENCY
ALLOCATIONS

THE RADIO SPECTRUM
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The maijority of the radio spectrum has
been allocated

Only available radio-quit sites: south Africa and western A
(or the back side of the Moon)



Signal corruptions

> Astronomical radio signals are very weak
» Calibration is the name of the game
> Several sources of corruption

» lonospheric Faraday Rotation/phase

» Antenna/station beam patterns

» Receiver gain and phase errors

If not tackled, they will limited the sensitivity and therefore
the science
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SKA data rates

Aperture Array
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Science data processor pipeline

5 Corner  Course Fine F-step/ Visibility Observation  Gridding Image
Imaging: Turning  Delays Correlation Steering Buffer Visibilities Imaging Storage
oy ey
[ ko] -
[ @ o i or} i o) ©
incoming | @ w <, 291 = iy 3 c o O
ncoming | @ s =h 3 30 = 03 o = =
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collectors . o 2 S 9 3 LA * ~+ » o
— = o 3 8 | 9 18 g o 5 3
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= () 0 q
" Non _Corner Course Beamforminﬁ/ Beam Obserxation Time-series Search Object/timing
. Turning  Delays De-dispersion Steering Buffer Searching analysis Storage
Imaging:
SKA 1 10 Tbls 50 PB 200 Pflop 10 Pflop 1EB/y 100 Pflop
SKA 2 1000Tb/s 10/1 TB/s 10 Eflop 1 Eflop 10 EBly 1 Eflop

\/_/

30x more computationally |
(deconvolution, gridding
90% of power consu

Imaging and calibration determines
problem size



Current data reduction scheme
Software developed in the 80s/90s

Fortran libraries

Minimal use of multi-cores/No use of accelerators

Design for interactive processing of single dataset/Support for scripted batched
ipython/custom REPL
Will not work for SKA

vV v v v v Y

# simobserve :: mosaic simulation task:
project = ‘sim’ # root prefix for output file names
skymodel = 3 # model image to observe
complist = # componentlist to observe
setpointings = True
integration = ‘10s’ # integration (sampling) time
direction z v #  "J2000 19h00n00 -40d00m00" or "" to center on model
mapsize = [, '] # angular size of map or "" to cover model
maptype = "ALMA" # hexagonal, square, etc
pointingspacing = s # spacing in between pointings or "0,25PB" or “" for 0.5 PB
ohsmode = ‘int' # observation mode to simulate [int{interferometer)|sd(singledish)|""(none)]
antennalist = ‘alma,outl0,cfg’ # interferometer antenna position file
refdate = '2012/05/21" # date of observation - not critical unless concatting simulations
hourangle = 'transit’ # hour angle of observation center e,g, -3:00:00, or "transit"
totaltime £ '7200s" # total time of observation or number of repetitions
caldirection = v # pt source calibrator [experimental]
calflux = 1y’
thernalnoise = "Sopapilla’ # add thermal noise: [tsys-atmltsys-manuall""]
leakage = 0,0 # cross polarization (interferometer only)
graphics = ‘both’ # display graphics at each stage to [scr‘emlﬁlelbothlmne]
verbose = False
overurite = True # overwrite files starting with $project
async = False # If true the taskname must be started using simobserve(,..)




Application Level Mahout, R, and Applications Applications and Community Codes

1
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é Hive Pig Squop Flume : FGRTRAN, G C-i—i-, and IDEs
I ™~ : '
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Application Level i o 1
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What is Spark?

Fast and Expressive Cluster Computing
System Compatible with Apache Hadoop

2.5x /eSS COde

Usable
»General execution  , Rich APIs in Java,
graphs Scala, Python

»In-memory storage »Interactive she



Resilient Distributed

Operations
Datasets » Transformations
» Collections of objects spread across a cluster, stored (e.g. map, filter, groupBy)

» Built through parallel transformations

» Automatically rebuilt on failure

Key Concepts

Write programs in terms of transformation
distributed datasets

in RAM or on Disk » Actions
(e.g. count, collect, save)



Working With RDDs

textFile = sc.textFile("SomeFile.txt”)

Transformations

\
\
\
\
\
\

linesWithSpark.count()
74

linesWithSpark.first()
# Apache Spark

linesWithSpark = textFile filter(lambda line: "Spark” in line)




Example: Log Mining

Load error messages from a log into me
then interactively search for various patte

—

lines = .textFile(“hdfs://...")
errors = lines.filter(lambda s: s.startswith(“ERROR”)) Eﬁ§,

messages = errors.map(lambda s: s.split(“\t”)[2])
messages.cache()

messages.filter(lambda s: “mysql” in s).count( Cache 2
messages.filter(lambda s: “php” in s).count() Worker

—_——
T
=

Full-text search of Wikipedia
« 60GB on 20 EC2 machine
* 0.5 sec vs. 20s for on-disk




Scaling Down

30

Execution time (s)
N
o O
| |
E H 1

1 2 3 b
% of working set in cache




Software Components

» Spark runs as a library in your program (1 instance
per app)

» Runs tasks locally or on cluster

» Mesos, YARN or standalone mode

» Accesses storage systems via Hadoop InputFormat
API

» Can use HBase, HDFS, S3, ...

Your application
SparkContext

Cluster
manager

Worker Worker

Spark Spark
executor executor

HDFS or other storage




Task Scheduler

» General task
graphs

» Automatically
pipelines functions

» Data locality
aware

» Partitioning aware
to avoid shuffles

-RDD (@ = cached parti




Advanced Features

>

>

>

Controllable partitioning

» Speed up joins against a dataset
Controllable storage formats

> Keep data serialized for efficiency, replicate to multiple nodes, cache on disk
Shared variables: broadcasts, accumulators

See online docs for details!




Why Spark

» Power consumption will be the most important differentiator -minimize moveme

» supercomputer in the middle of the desert
» data locality - automatic work placement
» In-memory processing
» Iterative algorithms / Pipelines that enable piggybacking
» New algorithms that have modest inter-process communication
» Not all features of MPI are required -> Simple collectives: broadcast, aggregation
» Can MPI handle the increased pararellism available on exascale systems?
» Fault tolerance
» Current MTBF: 2 out of 600 nodes per week -> 300 nodes per week for SKA
» MPI applications need to be designed for fault-tolerance/checkpointing
» Straggler mitigation
» Friendly APIs



Fault Tolerance

7 Bright Cluster Manager

Fle  Montorng  Fiter  View

Bookmarks  Help

= mkhadooplusire
a_jRacks
=}
afZchassis
4[] Vitual SMP Nodes
aiNodes
= nodeot
Elinode002
E3node003.
(0 node004
Enode00s
E#inode00s
4[5 Cloud Nodes
a[ZIMIC Nodes.
4 GPU Units
4[5 Other Devices
a2 Node Groups
a[]Hadoop Instances
(Cicdhlustre

@ Ceph

A Puppet

3 OpenStack

A& Users & Groups
*'Workload Management
£ Monitoring Canfiguration
(%) Authorization

B Authentication

{1 IEEL

] (Gispary

0
21/Get201513:25:00

[T ITE
I

24/0ct12075 14:20:00

Wetric: (_sparky_spartworker_WemtianHespCommited (8) o]

360

oME

29/06Y2015 13:2500

» Bright cluster manager

241062015 14:20:00

Wetric: ( cpuuser (%) |

LU

291062015 13:25:00.

21/0c1/2015 14:20:00

Metric: ( sparky_sparkworker_WemHeapinit (8 _'|

2268

2168

1968

1868
21/Del2015 13.25:00 21/0cti2015 14:20:00

» HDFS/Lustre/Ceph support

L abienarin

5 anivanis Contuimaton

| i

» Early warning via e-mail, SMS etc and automate actions

» Single plane of glass: monitor nodes, switches, PDUs, multiple clusters

» Hadoop/Spark-specific metrics and healthchecks

» Simple Python/REST/C++ APlIs

Sarvice viad man el o chead |
sariicn v




How is data processed

False Detection Rate

i
[
bl

o Datasets contain multiple sources of information

. lonosphere, lightning, cosmic rays, ET?, interference, compact and extended astronomical sources

»  Different algorithms for each

o Multidimensional data: spatial, time, frequency, polarization

o Pipeline should be able to chain different algorithms in order to extract as much information as possible w
mal data movement

Types of processing:

Signal detection/extraction Types of algorithms:
Object classification ANNS. (this talk)
AGN spectral classification Decision trees

Time series « SVM )
Clustering * Nearest neighbor >
LSS » Expectation maximization

Class discovery * Non-linear optimization

RFI mitigation

Transient detection
Deconvolution

£
o
B

o
o
w

0.02

0.01

- - - 4iCs:100%)
2 4ICs:68%
s 21C8:68%
g e P 6ICs:68%
12}
N— g
%
g

0.::)2 0 64 0.06 0.‘08 0.10
Missed Detection Rate
autoScan algorithm
Goldstein et al 2015

(d) Difference




Case study: Calibratio

+ 0.00179
+ 0.00158
+ 0.00137
- 0.00116

+ 0.00095

0.00074

0.00053

0.00032

0.00011
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Case study: CalibratioR
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Data distributed over a network: all existing
calibration algorithms work independently

min g;(J)
SAGECal
data
fi

Case study: Calibration

min ga(J) min gp(J)
fo [p

in = arg min g5 (J)
J

f(8)  Error to Minimize

A

Solution
0
S
=

We want a unified solution, collecting in

all data
O min >, 6:(J)

data
fi o Ip

{d,,dps oo L} = aJrg‘ mizllz_qf,(JfJ
!} geaey

1

subject to Js, =By Z, i€ [1,P]

Where By, Z is a smoothness constraint along \
time, space and fregency

Does not work in practice: data does not fit i
memory, model not accurate enough to
parametrize



Case study: Calibration 1. INITIALIZE

_ . Read data as Breeze Blo
fusion center

uing (s~ Qmm )

SAGECal 1. Each worker solves:
(J5,)"*! = arg min L; (J, (Z)*, (Y5,)™)
J

. P sub-problems, each wit

N

REPEAT until convergence or N_

i

data 2. Globally calculate average: |
fi fo fr @)= argzmin DL (U )™ Z,(Y8))

3. Broadcast Z to P sub-proble
Zb = sc.broadcast(Z)

Locally calculate Lagrange multiplier

L(Jgeeens Z.Ys, ) =3 90 p)+YH (3 -BL2Z)| + L)' 195, - By, 2]

&

o ) ) (V) = (Y )"+ alldn " — By (@)
* Consensus optimization: exploit smoothness of systematic
errors to find a unified solution
» Use of a fusion center is not essential, but easier
+ Communication overhead is little, more important is
robustness and fault tolerance (can throw away lost data).
» Large rho makes problem convex



Case study: Calibration

—©-Riemannian Trust Region
—©— Nesterov’s Steepest Descent ||

3.57

w
T

Normalized time
o

SKA |

0 100 200 300 400 500
No. of stations

* Almost linear caling with number of antennas
* Broadcasted data is 10x less (4KNP) than ac
(aTpX-D)
2
« Can be further reduced with:
o Use frequency multiplexing

o Broadcast data only to neighbors




1.

2.

Case study: Imaging
INITIALIZE :

WHILE ( img.getNoise < THERMAL_NOISE ) -

1. (row , col, flux) = img.getMax Dryimage £ °E :
2. resimg = resimg - g * PSF.imshift(l,m,size)
3. CCList.++ = (row, col, flux) ’°‘ =

a residual image set to the Fourier Transforr BGUELIES

of the visibilities «Clarke: subtract multiple components in on iteration (~ StOMP)
«Cotton-Schwab: Work in measurement space instead of image
space

(row , col, flux) MAX= tuple(l: Int, m:int) B e A o T O E T NS e (L S e b

var row: Int = _, var col: Int = _

squares fit of sinusoids to visibilities

a Clean Component list to empty

12000)
12000)

DEC offset (
DEC offset (i

RA offset (arcsec; J2000) EA clisst (arcaec: J2000)

linear scaling . .
fits in memory

easy to implement :
gridding/FFT can be offloaded to GPU via JNI Reconstructsd | « i
Does not work well with extended sources, still useful for catalogs a :
nd calibration 8 2

RA offset (aresec: J2000)

0.06

12000)
0.02 0.0.
12000)

DEC offset.
DEC offset (i



Imaging

» The “dirty” image is the convolution of the true underlying image with the PSF, corrupted by Gaussi
noise

y=k xx+n

@ Convolution Theorem

F(y) = F(k) F(x)

x=F1 <L) xy
F(k)

This pseudo-inverse cannot
be computed in the presenc
e of corruptions

X = F1 1 |F(k)|? .
B F(k)|F(k)|?> + SNR™1!

Tikhonov Regularization
High noise strong — regularizatio
n

x = argmin|ly —x



Imaging

The previous kernel can be transformed as a sum of 1D filters:

ktay=5 (k) xy =) o (vfxy) ~
J

12

filter factor

1o™® 10

Goal: use the following feed-forward, multi-layer convolutional neural network and train i
minimize

y,l=0
hy = {tanh(W; * hy_y + b;—1),l € {1,2}
W3 * hz

Initialize W from k* or from random, uniform distribution 43



Astrophysical sources are complication, but most radio sources have simple shapes, and occas

Use high SNR images from the VLA FIRST survey supplemented with simulated sources (elliptical Gau
points sources, narrow gaussians) to construct a training pair set of 10.000 64x64 images

uncorrupted convolved noise added recovered

] [¥s
i 57 I O 5

O | B
2 O R A
B Y 5 A O O T
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B NS IR A AR
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Challenges

» Spark is feature already but some useful components are not yet available

Issue Links

incorporates + z icial Neural Networl 0 Sparl IN PROGRESS
incorporat (¥] SPARK-2352 [MLLIB] Add Artificial N | Network (ANN) to Spark

(7] SPARK-10409 Multilayer perceptron regression OPEN

(I SPARK-10408 Autoencoder OPEN

(I) SPARK-10627 Regularization for artificial neural networks OPEN
is refated to SPARK-2623 Stacked Auto Encoder (Deep Learning ) OPEN
SPARK-4251 Add Restricted Boltzmann machine(RBM) algorithm to MLIib OPEN

SPARK-2352 [MLLIB] Add Artificial Neural Network (ANN) to Spark IN PROGRESS

SRARIKG273 Add Convolutional Neural network to Spark MLIib [ RESOLVED |

SRARK 9471 Multiiayer perceptron classifier [RESOLVED |

SPARK 2254 Add Artificial Neural Network (ANN) to Spark [CLoseD |

SPARK-4752 Classifier based on artificial neural network |cLosen |

(7] SPARK-4268 Add Sparse Autoencoder algorithm to MLIib OPEN

3333 3 3 2 3 > €€ € >

relates to (%) SPARK-8449 HDF5 readiwrite support for Spark MLIib OPEN

Spark / SPARK-1543
spoik Add ADMM for solving Lasso (and elastic net) problem

JNI
Analytical implementations needed
Hard to debug and argue about performance sometimes

Application specific formats

vV v v v Vv

Accelerators such as GPUs are almost mandatory - JNI



Conclusions

New generation interferometers will enable us

The availability of HPC (exascale) resources is a prerequisite
Energy cost will be the decisive factor when it comes to design
New hardware architectures require new algorithmic approaches

vV v vV Yy

Is Spark the answer? To early to answer but maybe

Distributed algorithms not only address computational issues, but
are more robust and accurate as well

Consensus calibration is the best way forward

Spark offers many of the tools need to construct radio
astronomical pipelines



