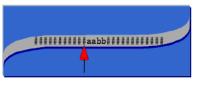


A striking discovery: algorithmic complexity is physics, not pure mathematics


A.Turing

J. v. Neumann

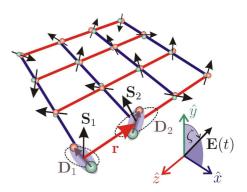
the universal Turing machine

Church-Turing thesis

sequential computing

Complexity classes **P, NP**

R. Feynman


D. Deutsch

R. Jozsa

1982: quantum simulator needed for simulating quantum systems

1985
Quantum algorithms
can be more powerful than
classical algorithms!

Hardware matters! quantum harware more powerful than classical hardware

Quantum Computing in an nut

quantum bit: two basis states $|0\rangle$ $|1\rangle$

$$|1\rangle$$

any arb. superposition is a possible state

$$|q_b\rangle = \alpha |0\rangle + \beta |1\rangle$$

quantum register: set of quantum bits a N qubit register R has 2^N basis states $|0,0,0,...0\rangle, |1,0,0,...0\rangle, |1,1,1,...1\rangle$

any arb. superposition of basis states can exist

The register of a quantum processor evolves by applying quantum gates to qubits

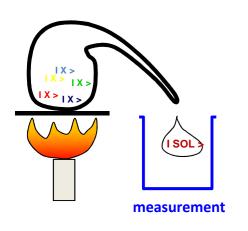
QM being linear massively parallel

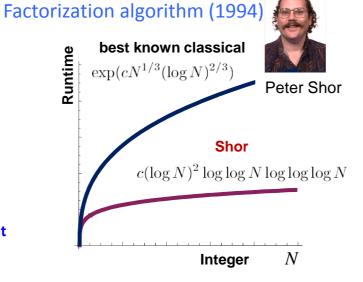
Quantum Computing in an nut

quantum bit: two basis states

any arb. superposition is a possible state

$$|q_b\rangle = \alpha |0\rangle + \beta |1\rangle$$

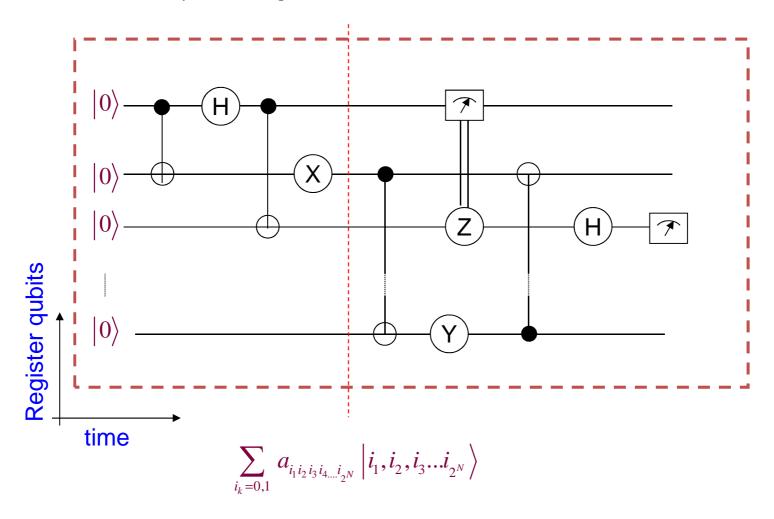

quantum register: set of quantum bits a N qubit register R has 2^N basis states $|0,0,0,...0\rangle, |1,0,0,...0\rangle, |1,1,1,...1\rangle$


any arb. superposition of basis states can exist

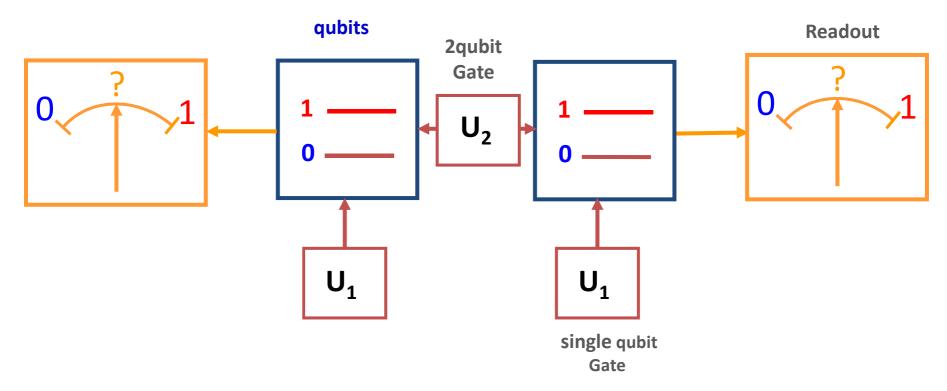
The register of a quantum processor evolves by applying quantum gates to qubits

QM being linear the evolution can be massively parallel

The art of QC:


How many qubits for overcoming a classical computer?

The most advanced classical **Computers** & codes can simulate 45 interacting qubits


A 50-100 ideal qubit qu. computer could overcome classical computers (for some tasks)

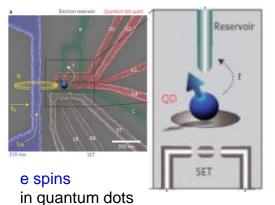
Running a quantum algorithm

- coherent evolution of a quantum register + readouts

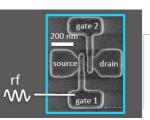
Blueprint of a quantum processor based on quantum gates

Huge Scalability challenges:

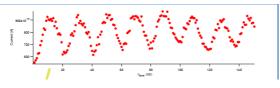
Hifi readout, hifi gates, quantum error correction


Electrical qubit circuits (in a nut)

HYBRID

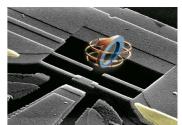

SYSTEMS

Electron spin states in semiconductor structures

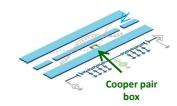

recent breakthrough at U. Of New South Wales (Sydney)

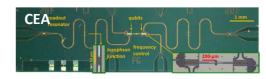
UNSW, TUDelft (+Intel), Harvard,... And CEA (Grenoble)

Ultra-small CMOS technology

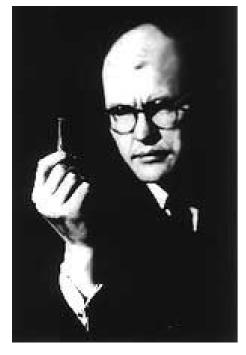


First qubit fabricated on an **industrial** platform

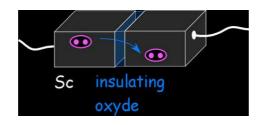

quantum states of superconducting Josephson circuits


First SC 'Cooper pair box' qubit (NEC 1999)

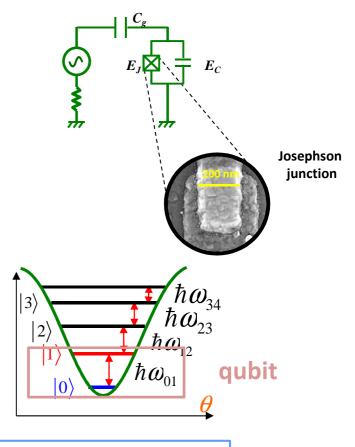
functional SC qubit (CEA 2002)


Modern « in resonator » version (Yale, 2006):

But electrical circuits are (usually) not quantum!


Jack S. Kilby handling the first integrated circuit

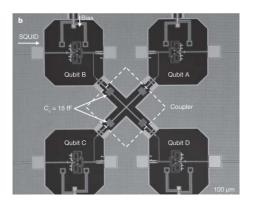
Large # degrees of freedom and dissipation make electrical variables classical


A simple quantum circuit based on the Josephson junction

A non dissipative **quantum** component: the **Josephson junction**

A non-linear inductor
That can make an
anharmonic resonator

Cooper pair box qubit circuit

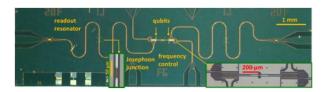


SC quantum processors ?

Elementary universal SC quantum processors

Martinis Lab, UC Santa Barbara

Yamamoto et.al., PRB 82 2010, Nat Phys 2012


Shor factorization algorithm (of 15)

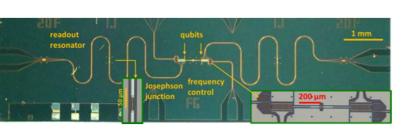
Running the Grover Search algorithm (on 4 items)

Quantronics, CEA

Dewes et. al., PRL & PRB 2012

Grover Search algorithm (on 4 items)

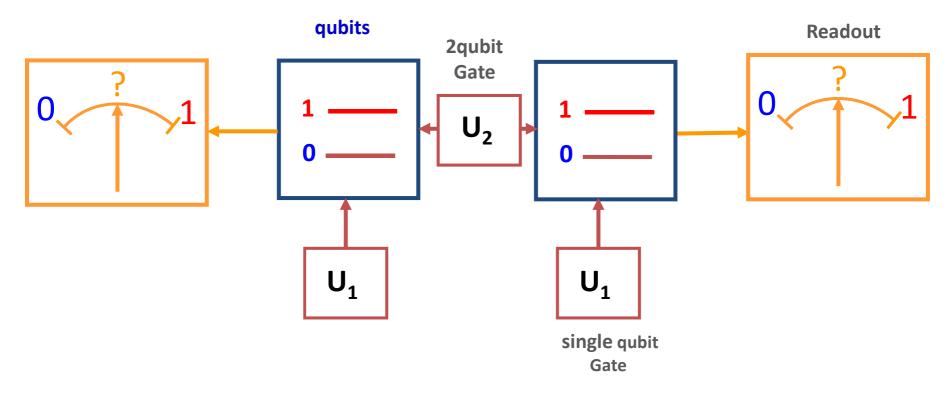
Finding the coin by lifting a cup once only



Classical query&check alg. ¼ success / run

Elementary universal SC quantum processors

Quantronics, CEA
Dewes et. al., PRL & PRB 2012
Grover Search algorithm
(on 4 items)



Running the Grover Search algorithm

Proof-of-principle for **quantum speed-up** on elementary cases (Quantronics 2012)

Blueprint of a quantum processor based on quantum gates

Huge Scalability challenges:

Hifi readout, hifi gates, quantum error correction

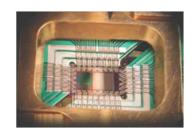
The overall quantum processor landscape in QC

Error-corrected (surface code)
Josephson qubit processors

IBM, Google
TUDelft (QuTech)
(NL, Kavli & Intel support)
UCSB
...start-ups

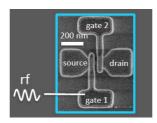
More robust qubit architectures

Yale (IARPA support)


Quantronics (CEA, Fr & Eu support)

Robust spin based qubits

Quantum assisted annealing machines

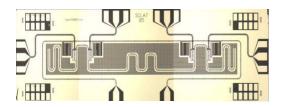


A challenger catching up?

Electron spin states in **semiconductor** structures

UNSW, TUDelft (+Intel), Harvard,... And CEA (Grenoble)

No architecture yet

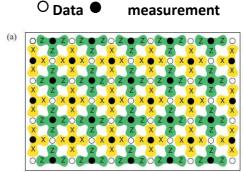


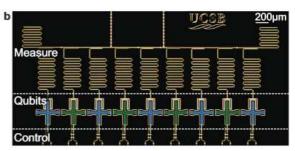
Ultra-small CMOS technology

First qubit fabricated on an **industrial** platform

Recent progress towards universal QC processors:

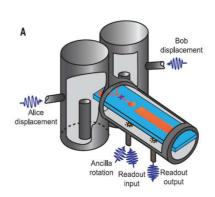
Quantum register readout


a less demanding fault-tolerant architecture, But with a huge qubit resource overhead Simultaneous hifi **readout** of a 4 qubit register (only!) UCSB-Google, CEA, 2014

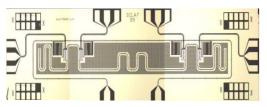

the surface code architecture (realistic?)

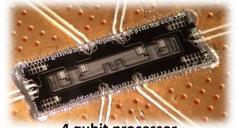
First 1D test circuits
For quantum error correction:

UCSB-Google, TU Delft


2015

towards robust qubits with hing Q resonators

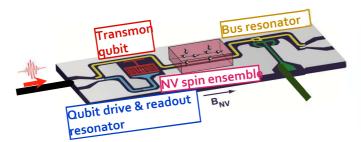

Yale,
With M. Mirrahimi (INRIA)
2014-16

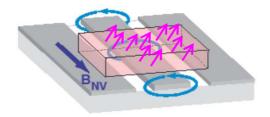


Quantronics research directions on QIP

4 to 10 qubits
without error correction

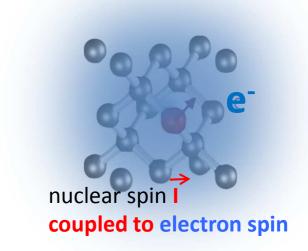
2015:

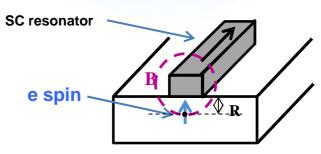




4 qubit processor
2 qubit gate operated, but processor not functional

not scalable, & too tech. demanding


A multimode hybrid memory



hybrid structures

A new architecture spins & electrical circuits

Electron spin coupled to μw photons that can be measured

Towards a robust qubit architecture based on nuclear spins

THE NEW PARADIGM OF QUANTUM COMPUTING AND ITS IMPLEMENTATION CHALLENGES

-A POTENTIAL GAME-CHANGER
THAT FACES MAJOR ROADBLOCKS

-DIFFERENT ROUTES

-MAJOR PLAYERS ENTER

- YIELDS TO APPEALING QUANTUM TECHNOLOGIES

Daniel ESTEVE

SPEC