<u>Ceatech</u>

DISSIPATION IN INTEGRATED CIRCUITS AND ADIABATIC SOLUTIONS

herve.fanet@cea.fr

- Limits of CMOS
- Adiabatic Solutions
- Capacitor Based Adiabatic Solutions

• Limits of CMOS

Adiabatic Solutions

Capacitor Based Adiabatic Solutions

CONTEXT

More Performance... Less Power

Ceatech CLASSICAL LOGIC (REMINDER) Leti

$$E_{leakage} = V_{DD}I_{leak}T$$

Ceatech

CMOS LIMITS

$$E = \alpha \cdot N \cdot C \cdot k^2 \cdot n^2 \cdot v_t^2 \frac{1}{(1 - k\eta)^2} \left(y^2 + my \cdot e^{-y} \right)$$

$$f(y)$$

Normalized threshold

$$y = V_T (1 - k\eta) / nv_t$$

Overdrive factor

$$k = \frac{V_{DD}}{V_T}$$

Technology and architecture dependent parameter

$$m = \frac{Tv_t}{\alpha nk} \cdot \frac{WC_{OX}}{LC} \mu \cdot e^{1.8} \cdot (1 - k\eta)$$

 V_{T} optimal around 200 mV independently of technology and architecture

CMOS LIMITS

 V_{T} optimal around 200 mV independently of technology and architecture

 V_{DD} optimal around 600 mV for high performance regime V_{DD} optimal around 400 mV for near-threshold regime V_{DD} optimal around 250 mV for sub-threshold regime

No solution for ultra low power with CMOS

• Limits of CMOS

- Adiabatic Solutions
- Capacitor Based Adiabatic Solutions

Ceatech ADIABATIC CHARGING OF A CAPACITOR Leti

10

Ceatech CONVENTIONAL AND ADIABATIC LOGIC Leti

VDD constant

V_{DD} not constant

BUT INPUTS HAVE TO BE STABLE DURING RAMP-UP AND RAMP-DOWN

ULTRA LOW POWER SOLUTIONS

Ceatech

 $CMOS: \frac{RC}{T}CV_{DD}^{2} + leakage \quad CMOS: CV_{T}^{2} + \frac{RC}{T}CV_{DD}^{2} + leakage \quad CMOS: \frac{RC}{T}CV_{DD}^{2} + leakage$

Ceatech

CMOS QUASI ADIABATIC LOGIC

Inverter circuit in the (a) PFAL and (b) ECRL family

leti

Ceatech NEMS BASED QUASI ADIABATIC LOGIC Leti

$$E = 2\frac{R \cdot C_{L}}{T}C_{L} \cdot V_{dd}^{2} + \frac{1}{2}C_{L} \cdot V_{RL}^{2}$$

NEMS CMOS COMPARISON

CMOS

Ceatech

$$E_{dissipated} \cong 2 \frac{R_{cmos}C_L}{T} C_L V_{dd}^2 + \frac{1}{2} C_L V_T^2 + I_{leakage} V_{dd} T$$
NEMS

$$E_{dissipated} = 2 \frac{R_{nems} \cdot C_L}{T} C_L \cdot V_{dd}^2 + \frac{1}{2} C_L \cdot V_{RL}^2 + 0$$

15

Strong effect of contact resistance

Ceatech

Contact technology is challenging

efi

Limits of CMOS

Adiabatic solutions

 Capacitor Based Adiabatic solutions

Ceatech FROM RESISTANCE TO CAPACITANCE BASED LOGIC

Ceatech

CAPACITOR BASED LOGIC

- Electrode geometry variation
- Permitivity variation

Microcapacitor example

- Adiabatic principle is « the » solution for ultra low power
- Reversible logic not necessary in a first step
- Choice of technology not yet clear but capacitor based logic seems promising