
DISSIPATION IN INTEGRATED
CIRCUITS AND ADIABATIC 
SOLUTIONS

herve.fanet@cea.fr



| 2

2

CONTEXT

• Limits of CMOS

• Adiabatic Solutions

• Capacitor Based Adiabatic
Solutions



| 3

3

CONTEXT

• Limits of CMOS

• Adiabatic Solutions

• Capacitor Based Adiabatic
Solutions



| 4

4

CONTEXT

J. Rabaey, 
ASPDAC 2008 

More Performance… Less Power
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CLASSICAL LOGIC (REMINDER)
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CMOS LIMITS
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CMOS LIMITS

VT optimal around 200 mV independently of technology and architecture

VDD  optimal around 600 mV for high performance regime
VDD  optimal around 400 mV for near-threshold regime
VDD  optimal around 250 mV for sub-threshold regime

No solution for ultra low power with CMOS 
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ADIABATIC CHARGING OF A CAPACITOR
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VDD constant VDD not constant

leakageCV
T

RC
E DD += 22leakageCVE DD += 2

BUT  INPUTS HAVE TO BE STABLE  DURING RAMP-UP AND RAMP-DOWN

CONVENTIONAL AND ADIABATIC LOGIC
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ULTRA LOW POWER SOLUTIONS

Optimal (for dissipation)charge and discharge of 
capacitances : the adiabatic mode  

Quasi-adiabatic pipelineRetractable logic solution Reversible pipeline
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CMOS QUASI ADIABATIC LOGIC

P. Teichmann, 2012
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NEMS BASED QUASI ADIABATIC LOGIC
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NEMS  CMOS COMPARISON
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COMPARISON OF CMOS AND NEMS LOGIC

Strong effect of contact resistance

Contact technology is challenging
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FROM RESISTANCE TO CAPACITANCE BASED LOGIC 
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CAPACITOR BASED LOGIC
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CONTEXT

• Electrode geometry variation
• Permitivity variation

Microcapacitor example
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VARIABLE CAPACITANCE TECHNOLOGIES
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CONTEXT

• Adiabatic principle is « the » solution for ultra 
low power

• Reversible logic not necessary in a first step

• Choice of technology not yet clear but capacitor
based logic seems promising

CONCLUSIONS 


