PAMSIM Project: Massive parallelism in numerical simulations for mechanics

Forum TERATEC June 29, 2016

lonel NISTOR EDF R&D

Needs for numerical simulation at EDF

About code_aster as a solver in Salome-Meca platform

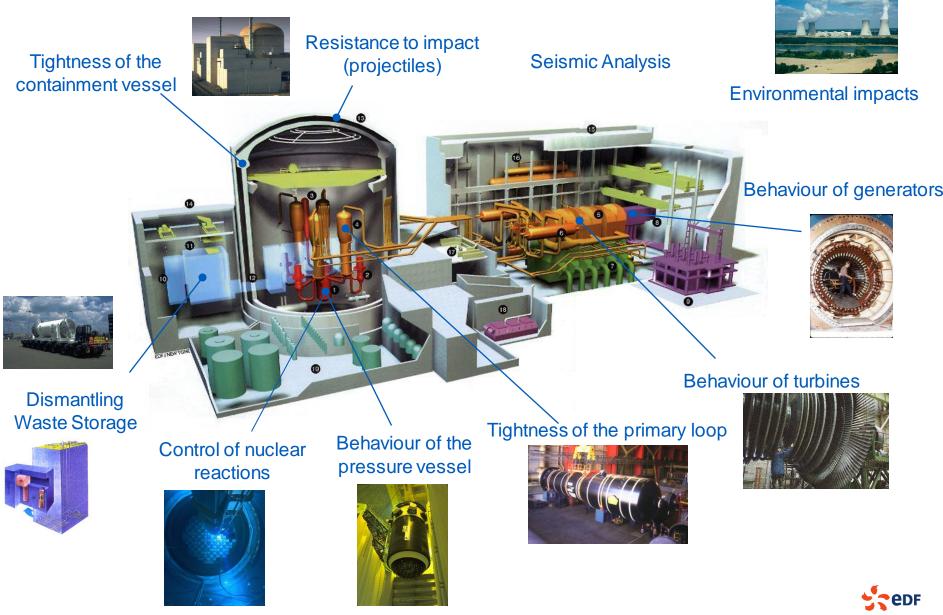
Highlights on some applications

PAMSIM : towards a massive parallel version of code_aster

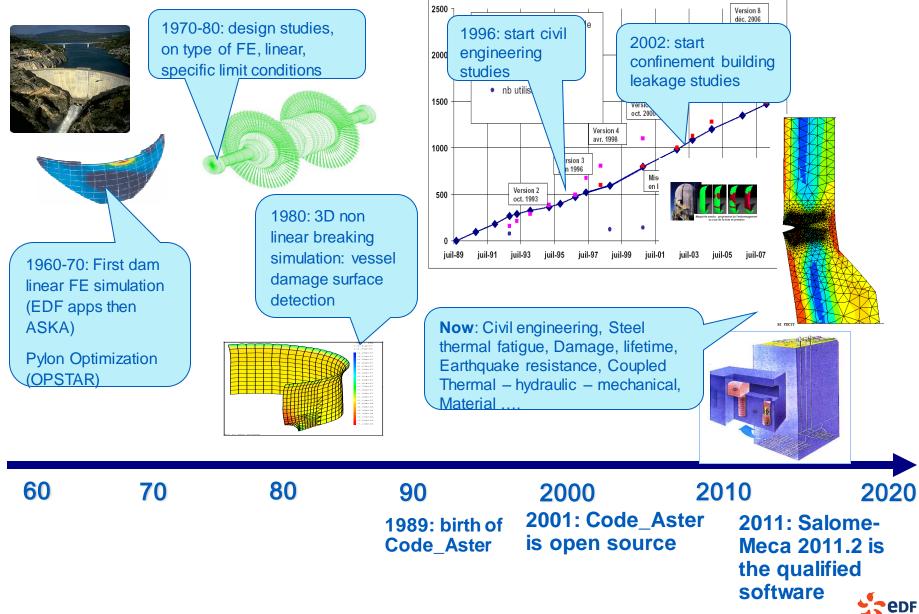
Conclusion and call for contributions

Needs for numerical simulation at EDF

About code_aster as a solver in Salome-Meca platform


Highlights on some applications

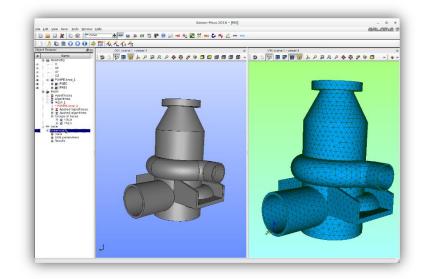
PAMSIM : towards a massive parallel version of code_aster


Conclusion and call for contributions

Needs for numerical simulations

50 years of structural mechanics simulation ...

... unified for 27 years through code_aster development


An all-purpose FEA software for structural mechanics :



Plugged in a user-friendly interoperable environment :

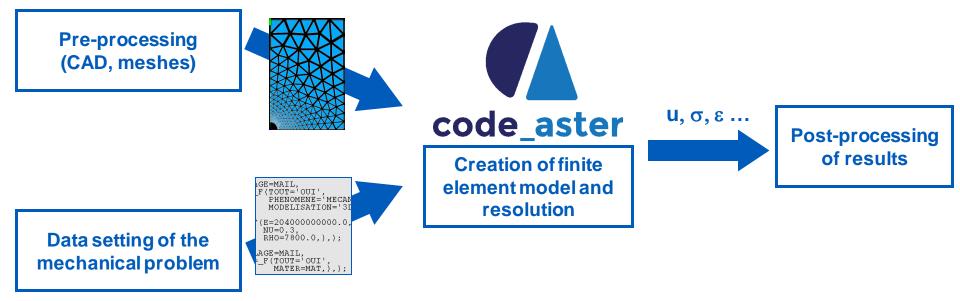
Salome-Meca www.code-aster.org

Needs for numerical simulation at EDF

About code_aster as a solver in Salome-Meca platform

Highlights on some applications

PAMSIM : towards a massive parallel version of code_aster

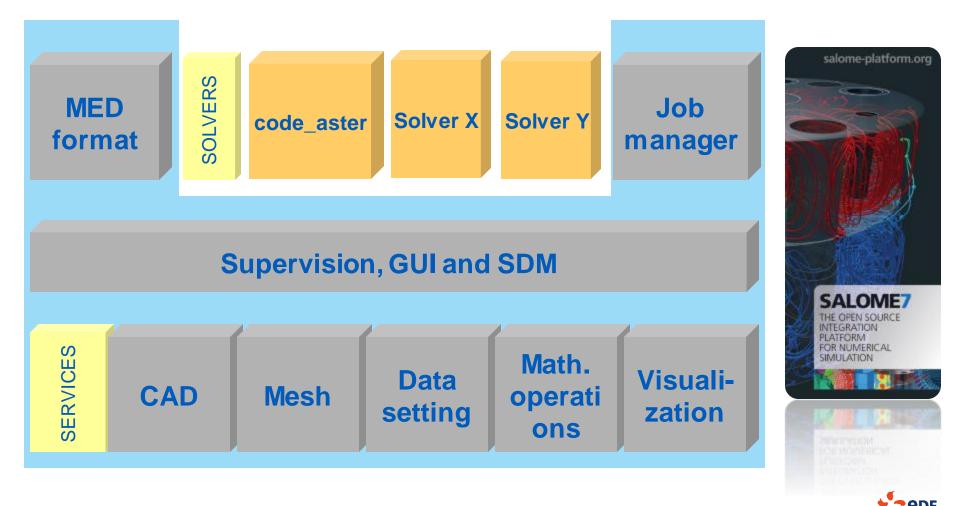

Conclusion and call for contributions

General presentation of Code_Aster

Code_Aster is a « stand-alone » thermo-mechanical solver

- No integrated GUI to create geometries and meshes
- No colourful post-processing
- With study data prepared in a text file

- Input: mesh and data setting
- Output: physical fields (displacement, strain, stress, temperature ...)


General presentation of Code_Aster

- An all-purpose code for themo-mechanical study of structures
 - With a wide variety of models
 - More than 400 finite elements: 3D, 2D, shells, beams, pipes ...
 - More than 100 constitutive laws
 - A wide range of solvers: mechanical statics and dynamics, vibrations, modal and harmonic analysis, thermo-hydro-mechanical coupled problems, thermics, metallurgy, acoustics ...
 - A computational software used by engineers, experts and researchers
 - Studies: a need of a robust, reliable, tested and qualified industrial simulation code at EDF
 - Researches: continuous integration of new models in the development versions

Presentation of SALOME platform

SALOME is a generic framework for pre- and post-processing

Salome_Meca platform for simulation in mechanics

SALOME generic platform

- Meshing
- Supervision and study data management
- Post-processing, mathematical operations

Skill modules

code_aster : implicit mechanics

- Europlexus : explicit dynamics
- Edyos : bearings modelling

 Rotating machinery, fracture mechanics, penstock modelling

```
□ ...
```


Needs for numerical simulation at EDF

About code_aster as a solver in Salome-Meca platform

Highlights on some applications

PAMSIM : towards a massive parallel version of code_aster

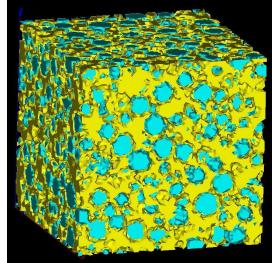
Conclusion and call for contributions

Concrete behavior: numerical identification of effective properties

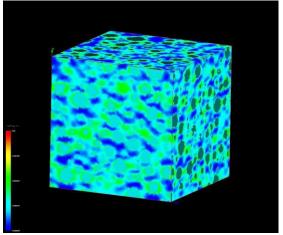
Issue

 mastery of concrete structures subjected to aging associated with environment terms

Goal


 Numerical identification of effective properties of such concretes

Study


 a virtual experiment using computations with Code_Aster, with homogeneous schemes, in order to find the elastic and viscous properties of concrete to estimate the creep behaviour

Results

Computed modulus: 33.0 GPa / measured modulus 33.7 GPa

3D concrete : 1116541 elements and 2024 inclusions

Deformation: visualization of compression bands

Identification and validation of micro-mechanical laws for austenitic steels

Issue

 the study of the behavior and lifetime of reactor components for nuclear power plants at polycrystals scale

Goal

develop a method to compare the kinematic fields measured in polycrystals during tests performed by scanning electronic microscope (SEM) and those from the simulation of these tests.

Study

simulation with code_aster of the tensile tests, with the boundary conditions nodal displacements measured over time on the edges of the field

Results

 Quite good agreement between simulation and measurements after updating procedure of parameters

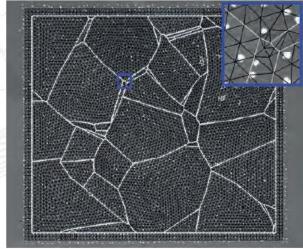
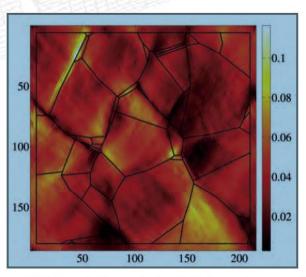



Figure 1:

(a) Maillage non-structuré de la microstructure expérimentale superposé à l'image MEB de la région d'intérêt. La barre d'échelle fait 100 μm.

⁽b) Champ de déformation longitudinal mesuré pour une déformation macroscopique de 5%. Les axes sont exprimés en micromètres.

Modeling the intergranular cracks by corrosion under contraints for stainless steel

🕨 Issue

 initiation and propagation of intergranular corrosion under constraint that affects nickel based alloys and austenitic stainless steels exposed to primary water of REP

Goal

 develop a method to compare the kinematic fields measured in polycrystals during tests performed by scanning electronic microscope (SEM) and those from the simulation of these tests.

Study

 simulation of the IGSCC with Code_Aster on a polycrystalline aggregate to quantify the coupling material-chemistry-mechanics mechanisms supposed to be involved in the initiation and propagation of cracks

Results

• The simulation reproduces, on small aggregates, experimentally observed phenomena: connection and coalescence of cracks, pH effects, effect of irradiation

Figure 1: Fissure inter-granulaire due à l'IGSCC

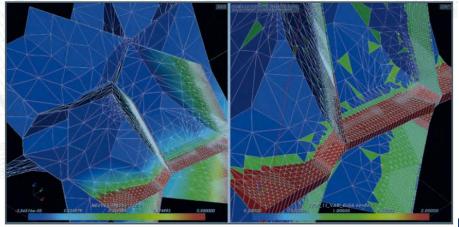


Figure 2: Joints de grains oxydés (en rouge, à gauche) et rompus (en rouge, à droite).

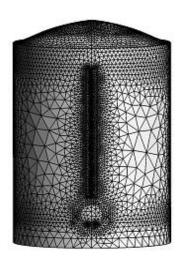
Needs for numerical simulation at EDF

About code_aster as a solver in Salome-Meca platform

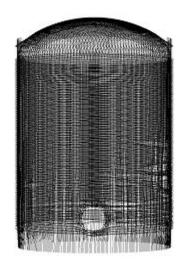
Highlights on some applications

PAMSIM : towards a massive parallel version of code_aster

Conclusion and call for contributions



Specific features of mechanical models


- Small size compared to other physical domains being poorly conditioned
 - Using finite elements of different types (3D, shells, beams)
 - Using linear relationships between degrees of freedom imposed by the Lagrange multipliers
 - Using specific behavior laws that change the nature of being resolved equations (loss of ellipticity)

Most frequently require the resolution of a linear system

- Typical example: reactor building model
 - Mixing 3D, shells and beams
 - Many Lagrange multipliers (about 30% of DDL)
 - Current solvers are not suitable

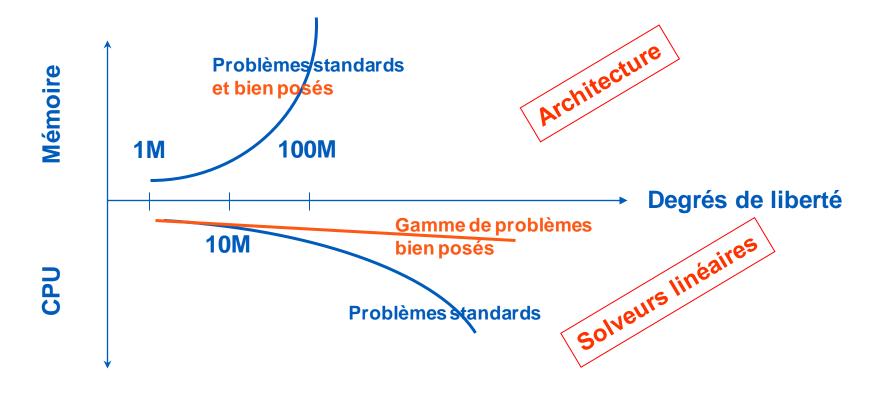
Concrete

Pretension cables

Identified priorities

- Objectives
 - 1: Reliability
 - Essential for the intended applications
 - 2: Robustness
 - Imposed by the population of users, who are mechanical engineers
 - 3: Performance
 - Important to ensure a return time consistent with the time of the industrial user and allow to move a scale in size models so as to refine the description of the physical and earn margins

Development actions


- Distribution of data structures
- Using algebraic scalable linear solvers
 - Multigrids
 - Hybridization of direct and iterative methods

State of the art of HPC in structural mechanics

Significant return time but less critical than the memory consumption

Better memory distribution allows moreover to win on both fronts

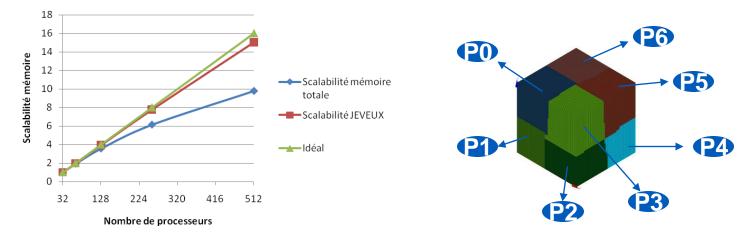
EDF supercomputers: more and more cores, less and less memory by core

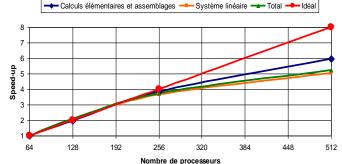
Risk of non-suitability of the code available architectures

Situation of Code_Aster before starting PAMSIM

Two assessments were performed in 2008 and 2012 on the parallel features

- Parallel performance has improved since 2008 as evidenced by six industrial studies
- Code_Aster is now a parallelized computation code but do not effectively takes advantage of massevely parallel machines (typically, the efficiency collapses beyond 100 processors)
- The assessment is shared by a study conducted in 2012 by SGI on industrial codes


Workload	Applications	Scaling: # threads
CFD	Fluent, StarCCM+, CFX, OpenFOAM, Powerflow	2048
Comp. Electromagnetic	FEKO, FMSLIB, HMSS	256
Reservoir	Eclipse,Intersect, VIP, Nexus	512
Seismic	ProMAX, EPOS, Geocluster	1-1024
Structural Mechanics (Implicit)	ABAQUS, ANSYS Nastran,	1-32
Structural Mechanics (Explicit)	LS-Dyna, Pam-Crash, Radioss	512


20

Conclusions of a feasibility study

- A significant increase in parallel performance in structural mechanics is possible
 - Division of domains for memory distribution and parallelism of elementary computations

Parallel linear solver for the distribution of CPU cost (best performance cas à 100 millions de ddls cost à 100 millions de ddls

Launching of the PAMSIM project

Submitted to the call « Calcul Intensif et Simulation Numérique N°2 » launched in 2015 by BPI France in the framework of PIA

Objective

develop and make available to economic actors a massively parallel version, robust and validated, of the EDF reference code for simulation in mechanics, Code_Aster.

A consortium of 7 partners :

- EDF R&D
- NECS, ALNEOS, PHIMECA
- LMT Cachan
- CERFACS, IFPEN

From 2016 to 2018

A total estimate cost of 2,89 M€

And during the construction of the project ...

Results for implicit FEM

Maximum number of ddl

- < 100k: ~ 12 %</pre>
- 100k 10M : ~ 54 %
- **–** 10M 100M: ~ 20 %
- 100M 1B : ~ 14 %
- > 1B : 0 %
- Number of used cores
 - **1** 8 : ~ 34 %
 - **9** 64 : ~ 31 %
 - **65 1024 : ~ 29 %**
 - **–** 1024 : ~ 6 %

PAMSIM objective

PAMSIM objective

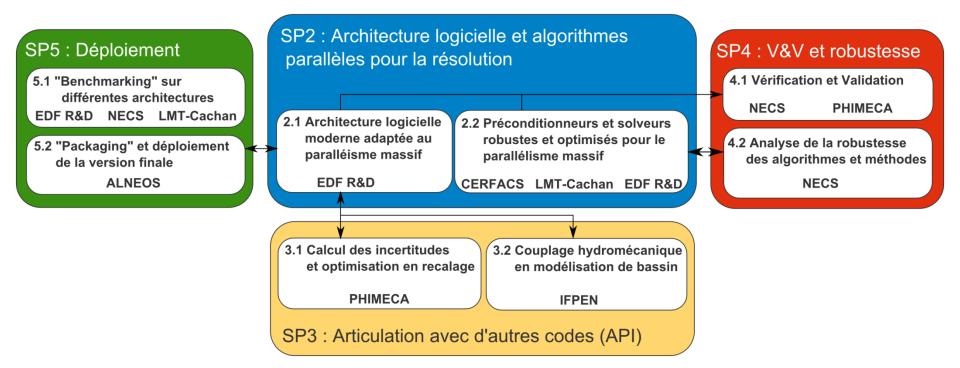
And during the construction of the project ...

Barrier to uptake according to the survey :

- 1) Purchase cost of the hardware and maintenance
- 2) Prohibitive licence cost of the HPC software
- Code_Aster is a free open source software
- 3) Poor performance of the software
- Objective of PAMSIM : up to 1024 cores for industrial studies

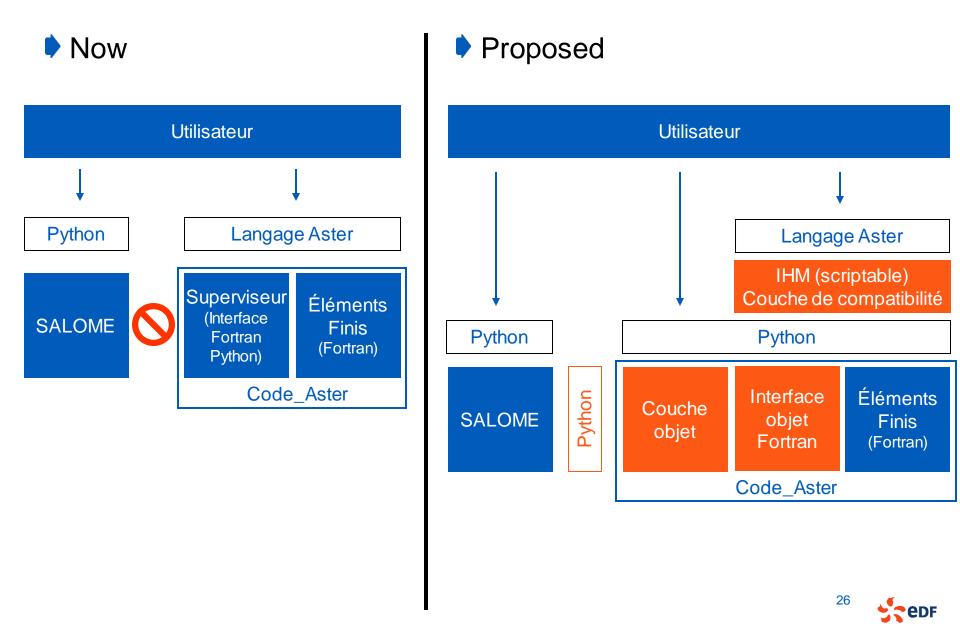
4) Difficulty in managing increasing volume of simulation date

- another PIA project launched by EDF R&D : AVIDO


5) Difficulty in automating workflow between different software

 Coupling possibility of code_aster with other codes foreseen by PAMSIM

PAMSIM Project organisation


SP1 : Coordination du projet PAMSIM, reporting PIA

EDF R&D

Transition to a modern architecture

From a moderate to a massive parallelism

Current parallel features

Direct solver MUMPS with shared memory parallelism

Good scalability up to 32 processors

Excellent robusteness

Iterative solvers (PETSc library)

Punctual distribution of memory

Lack of robustness without an appropriate booster Future parallel features

Total distribution of memory over the calculation domain

Scalability goal of up to 1024 proc

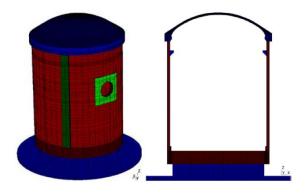
Satisfying the 3 objectifs:

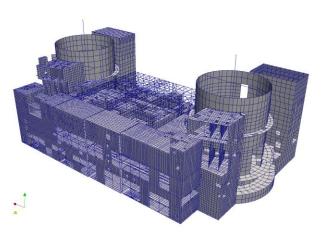
- reliability
- robusteness
- performance (lower CPU time and memory per proc)

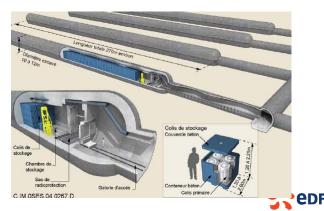
27

Target EDF applications

Civil Engineering (VERCORS model)


- 2015: simulation of damage to a containment portion (smaller than the experimental tests)
- 2019 (preparation of the final test on the model): simulation of damage on the entire containment, several million degrees of freedom needed for each modelized crack


Earthquake


- 2015: simulation of damage to a single building under earthquake
- 2020: several buildings with realistic SSI

Nuclear residual storage

- 2015: 3D simulation of excavation with consideration of material nonlinearities
- 2019: 3D simulation of excavation of two perpendicular galleries (crossover) with structural details and nonlinearities

Outline

Needs for numerical simulation at EDF

About code_aster as a solver in Salome-Meca platform

Highlights on some applications

PAMSIM : towards a massive parallel version of code_aster

Conclusion and call for contributions

Conclusions

- EDF launched in 2016, with six other partners, the development of a massively parallel version of Code_Aster in the PIA project PAMSIM
- The architecture of the code, its solvers and boosters will evolve to allow the launch of the calculations up to 1024 proc with optimized memory usage
- The future massively parallel Open Source version of Code_Aster will be available on HPC facilities (GENCI, HPCSpot, ...)


Call for contributions

If you would like to contribute to the verification and validation of future massively parallel version of Code_Aster, with an application on the simulation of materials, your help will be appreciated by the consortium PAMSIM !

Contacts

- Ionel NISTOR, <u>ionel.nistor@edf.fr</u>
- Hassan BERRO, <u>Hassan.berro@edf.fr</u>

code_aster UK Users Day| Overview of Salome-Meca and code_aster | June 23rd 2016