Accélération de calculs de simulations des matériaux sur GPU

Francois Courteille Senior Solution Architect, Accelerated Computing

Tesla, the NVIDIA compute platform

AGENDA

Quantum Chemistry Applications Overview

Molecular Dynamics Applications Overview

Material Science Applications at the start of the Pascal Era

THE WORLD LEADER IN VISUAL COMPUTING

OUR TEN YEARS IN HPC

CREDENTIALS BUILT OVER TIME

Majority of HPC Applications are GPU-Accelerated, 410 and Growing

300K CUDA Developers, 4x Growth in 4 years 100% of Deep Learning Frameworks are Accelerated

www.nvidia.com/appscatalo

END-TO-END TESLA PRODUCT FAMILY

HYPERSCALE HPC	MIXED-APPS HPC	STRONG-SCALING HPC	FULLY INTEGRATED DL SUPERCOMPUTER
Tesla M4, M40	Tesla K80	Tesla P100	DGX-1
Hyperscale deployment for DL training, inference, video & image processing	HPC data centers running mix of CPU and GPU workloads	Hyperscale & HPC data centers running apps that scale to multiple GPUs	For customers who need to get going now with fully integrated solution

TESLA FOR SIMULATION

OVERVIEW OF LIFE & MATERIAL ACCELERATED APPS

MD: All key codes are GPU-accelerated

- \times Great multi-GPU performance
- × Focus on dense (up to 16) GPU nodes &/or large # of GPU nodes
- X ACEMD*, AMBER (PMEMD)*, BAND, CHARMM, DESMOND, ESPResso, Folding@Home, GPUgrid.net, GROMACS, HALMD, HOOMD-Blue*, LAMMPS, Lattice Microbes*, mdcore, MELD, miniMD, NAMD, OpenMM, PolyFTS, SOP-GPU* & more

QC: All key codes are ported or optimizing

- $\times\,$ Focus on using GPU-accelerated math libraries, OpenACC directives
- \times GPU-accelerated and available today:
 - ABINIT, ACES III, ADF, BigDFT, CP2K, GAMESS, GAMESS-UK, GPAW, LATTE, LSDalton, LSMS, MOLCAS, MOPAC2012, NWChem, OCTOPUS*, PEtot, QUICK, Q-Chem, QMCPack, Quantum Espresso/PWscf, QUICK, TeraChem*
- imes Active GPU acceleration projects:
 - × CASTEP, GAMESS, Gaussian, ONETEP, Quantum Supercharger Library*, VASP & more

green* = application where >90% of the workload is on GPU

MD VS. QC ON GPUS

"Classical" Molecular Dynamics	Quantum Chemistry (MO, PW, DFT, Semi-Emp)
Simulates positions of atoms over time; chemical-biological or chemical-material behaviors	Calculates electronic properties; ground state, excited states, spectral properties, making/breaking bonds, physical properties
Forces calculated from simple empirical formulas (bond rearrangement generally forbidden)	Forces derived from electron wave function (bond rearrangement OK, e.g., bond energies)
Up to millions of atoms	Up to a few thousand atoms
Solvent included without difficulty	Generally in a vacuum but if needed, solvent treated classically (QM/MM) or using implicit methods
Single precision dominated	Double precision is important
Uses cuBLAS, cuFFT, CUDA	Uses cuBLAS, cuFFT, OpenACC
Geforce (Accademics), Tesla (Servers)	Tesla recommended
ECC off	ECC on

GPU-Accelerated Quantum Chemistry Apps

Green Lettering Indicates Performance Slides Included

- Abinit
- ACES III
- ► ADF
- **BigDFT** Þ.
- CP2K
- GAMESS-US

- Gaussian
- ► GPAW
- ► LATTE
 - LSDalton
- MOLCAS
 - Mopac2012
 - NWChem

- Octopus
- ONETEP
- Petot
 - Q-Chem
 - QMCPACK
 - Quantum Espresso

- Quantum Þ. SuperCharger Library
- TeraChem
- VASP
 - WL-LSMS

cea

6th International ABINIT Developer Workshop

April 15-18, 2013 - Dinard, France

USING ABINIT ON GRAPHICS PROCESSING UNITS (GPU)

Marc Torrent CEA, DAM, DIF, F-91297 Arpajon, France

Florent Dahm C-S – 22 av. Galilée. 92350 Le Plessis-Robinson

With a contribution from Yann Pouillon for the build system

www.cea.fi

ABINIT ON GPU

Introduction

Introduction to GPU computing *Architecture, programming model*

Density-Functional Theory with plane waves How to port it on GPU

ABINIT on GPU

Implementation

Performances of ABINIT v7.0 How To...

Compile

Use

LOCAL OPERATOR: FAST FOURIER TRANSFORMS

Our choice (for a first version): Replace the MPI plane wave level by a FFT computation on GPU

- Included in **Cuda** package : **cuFFT** library Interfaced with c and Fortran
 - A system dependent efficiency is expected
 - Small FFT underuse the GPU and are dominated by
 - the time required to transfer the data to/from the GPU

Within PAW, small plane wave basis are used

LOCAL OPERATOR: FAST FOURIER TRANSFORMS

Implementation

- Interface Cuda / Fortran
- New routines that encapsulate cufft calls
- Development of 3 small cuda kernels

Optimization of memory copy to overlap

computation and data transfer Performance highly dependent on FFT size

TEST CASE

107 gold atoms cell TGCC-Curie (Intel Westmere + Nvidia M2090)

ABINIT on GPU| April 15, 2013 | PAGE 15

LOCAL OPERATOR: FAST FOURIER TRANSFORMS

Improvement : multiple band optimization

The Cuda kernels are more intensively used Requires less transfers

See bandpp variable When Locally Optimal Block Preconditioned Conjugate Gradient algorithm is used

Tor gold atomo			
bandpp	fourwf on GPU		
1	112,94		
2	84,55		
4	70,55		
8	61,91		
18	54,79		
72	50,55		

107 gold atoms

31 copper atoms

bandpp	fourwf on GPU
1	36,02
2	20,79
4	14,14
10	9,16
20	9,50
100	7,94

ABINIT on GPU| April 15, 2013 | PAGE 16

TEST CASE

TGCC-Curie (Intel Westmere + Nvidia M2090)

cea

NON LOCAL OPERATOR

- Implementation
 - Development of 2 Cuda Kernels for
 - Development of 2 Cuda Kernels for

$$\langle \tilde{p} | \Psi \rangle = \sum_{g} \langle \tilde{p} | g! \rangle \langle g! \Psi \rangle$$

$$\langle \vec{p} | \Psi \rangle = \sum_{g} \langle \tilde{p} | g! \rangle \langle g! \Psi \rangle$$

$$\langle \vec{p} | \Psi \rangle = \sum_{i,j} \langle \vec{p} | \vec{p} \rangle D_{ij} \quad \langle \mu \rangle$$

Using collaborative memory zones as much as possible (threads linke to the same plane wave lie in the same collaborative zone)

• Non-local operator Used for Overlap operator

Nonces and stress tensor

PAW occupation matrix

Performances (NL operator only)

	nonlop CPU time (s)	nonlop GPU time (s)	Speedup GPU vs CPU
107 gold atoms	3142	1122	2.8
31 copper atom	85	42	2.0
S UO ₂ atoms	63	36	1.8

TGCC-Curie

(Intel Westmere + Nvidia M2090)

In addition to all MPI parallelization levels !

- Need a large number of PW
- Need a large number of NL projectors

Algorithm¹ lobpcg Require: $^{0} = \{ 0, \dots, 0 \}$ close to the minimum and K a preconditioner; $P = \{P_{1}^{(0)}, \dots, P_{m}^{0}\}$ is initialized to 0. 1: for i=0,1, ..., dq $\neg (i) \equiv \neg ((i))$ 2: $\mathbf{R}^{(i)} = \mathbf{H}^{(i)} \quad \mathbf{\nabla}^{(i)}\mathbf{O}^{(i)}$ 3: 4: $W^{(i)} = KR^{(i)}$ The Rayleigh-Ritz method is applied within the subspace $\overline{x} =$ 5: $\stackrel{\mathbf{n}}{P}\stackrel{(i)}{\ldots}, P_{\mathbf{m}}\stackrel{(i)}{,} \stackrel{(i)}{1}\stackrel{(i)}{,} \dots, \stackrel{(i)}{\mathbf{m}}, \stackrel{(i)}{\mathbf{W}}_{1}, \dots, \stackrel{(i)}{\mathbf{W}}_{\mathbf{M}}$ $(i+1) = (i) \quad (i) + \mathbf{k} (i) \mathbf{W}(i) + (i) \mathbf{P}(i)$ $\mathbf{P}^{(i+1)} = \boldsymbol{\leftarrow}^{(i)} \mathbf{W}^{(i)} + \quad (i) \mathbf{P}^{(i)}$ 7: $8 \cdot \text{ end for}$ 1.0

! Our choice : use of **cuBlas**

Diagonalization/othogonalization within blocks and ! Need for a free LAPACK packag e on GPU Our choice : use of MAGMA

Locally Optimal Block

Gradient

bandpp

1

2

10

50

Preconditioned Conjugate

Total time

674

612

1077

5816

Time Linear Algebra

119

116

428

5167

ABINIT on GPU | April 15, 2013 | PAGE 18

conditbns are met:

ITERATIVE EIGENSOLVER

Introduction

Introduction to GPU computing *Architecture, programming model*

Density-Functional Theory with plane waves How to port it on GPU

ABINIT on GPU

Implementation

Performances of ABINIT v7.0

How To...

Compile

Use

PERFORMANCES ON A SINGLE GPU

Comparing architectures...

TGCC-Titane Intel Nehalem+ NVidia S1070 (Tesla) TGCC-Curie Intel Westmere + NVidia M2090 (Fermi)

Time proc 0 (s)		Titane			Curie	
	CPU	CPU+GPU	Speedup	CPU	CPU+GPU	Speedup
107 gold atoms	4230	1857	2,3	5154	621	8.3
31 copper atom	153	102	1,5	235	64	3,7
ç	85	98	0,9	86	73	1.2

5 BaTiO3 atoms

Strongly dependent on architecture *Titane : fast CPU*+ old GPU

BaTiO₃ case is too small to take benefit from GPU

PERFORMANCES ON MULTIPLE GPU

TGCC-Curie

Intel Westmere + NVidia M2090 (Fermi)

Time proc 0 (s)	Curie		
	CPU	CPU+GPU	Speedup
215 silicon atoms (1 iter	16160	3680	4,4
.)	866	621	4,7
107 gold atoms	49	64	1,5
31 copper atomso CPU (MPI only) + 200 GPU			
31 copper atom 80 CPU (MP	Pl only) + 20	0 GPU	
Time proc 0 (s)	Pl only) + 20	0 GPU Curie	
Time proc 0 (s)	Pl only) + 20 CPU	0 GPU Curie CPU+GPU	Speedup
31 copperatom20 CPU (MFTime proc0215 siliconatoms(45 it	Pl only) + 20 CPU 25856	0 GPU Curie CPU+GPU 6309	Speedup 4,1

8 CPU (MPI only) + 8 GPU

Less efficient when the number of MPI processes increases (the load decreases on the GPU)

PERFORMANCES VS OTHER CODES

Other DFT codes have been ported on GPU. Speedup of plane wave codes are similar

Quantum espresso (plane waves) : x3/x4 (sequential), x2/x3 (parallel) [1,2]

VASP (plane waves) : **x3/x4 [3,4]**

BigDFT (wavelets) : x5/x7 [5]

GPAW (real space) : x10/x15 [1,6]

[1] Harju et al, App. Parallel and Sc. Comp. Lectures Notes in Computer Science 7782, p3 (2013)

[2] Spiga et al, pdp, 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing, p368 (2012)

[3] Mainz et al, Computer Physics Communication 182, p1421 (2011)

[4] Hacene et al,, Journal of Computational Chemistry 33, p2581(2012)

[5] Genovese et al, Journal of Chemical Physics, 131, 034103 (2009)

[6] Hakala et al, *PARA 2012. LNCS*, vol **7782**, p63, Springer, Heidelberg (2013)

Gaussian

Excerpts from . . .

ENABLING THE ELECTRONIC STRUCTURE PROGRAM GAUSSIAN ON GPGPUS USING OPENACC

Roberto Gomperts (NVIDIA), Michael Frisch (Gaussian, Inc.), Giovanni Scalmani (Gaussian, Inc.), Brent Leback (NVIDIA/PGI)

PREVIOUSLY

Earlier Presentations

GRC Poster 2012

ACS Spring 2014

GTC Spring 2014 (recording at <u>http://on-</u> <u>demand.gputechconf.com/gtc/2014/video/S4613-enabling-gaussian-09-gpgpus.mp4</u>)

WATOC Fall 2014

Full presentation available

GTC Spring 2016 (this full recording at http://mygtc.gputechconf.com/quicklink/4r1305r; requires registration)

CURRENT STATUS Single Node

Implemented

GPU TECHNO CONFER

Energies for Closed and Open Shell HF and DFT (less than a handful of XC-functionals missing)

First derivatives for the same as above

Second derivatives for the same as above

Using only

OpenACC

CUDA library calls (BLAS)

GAUSSIAN PARALLELISM MODEL

CPU Cluster

CLOSING REMARKS

Significant Progress has been made in enabling Gaussian on GPUs with OpenACC OpenACC is increasingly becoming more versatile Significant work lies ahead to improve performance Expand feature set:

PBC, Solvation, MP2, ONIOM, triples-Corrections

EARLY PERFORMANCE RESULTS (CCSD(T))

Method	CCSD(t)
No. of Atoms	33
Basis Set	6-31G(d,p)
No. of Basis Funcs	315
No. Occ Orbitals	41
No. Virt Orbitals	259
No. of Cycles	15
No. CCSD iters	16

Ibuprofen CCSD(t) Calculation Speed Ups Relative to CPU-Only Full Node

3.0 GHz); 128 GB RAM (DD3-1600); Used 108 GB GB Global Memory

GPU VASP Collaboration

Collaborators

2013-2014 Project Scope

Minimization algorithms to calculate electronic ground state

- Blocked Davidson (ALGO = NORMAL & FAST)
- RMM-DIIS (ALGO = VERYFAST & FAST)
- **K-Points**
- Optimization for critical step in exact exchange calculations

Earlier work

- Speeding up plane-wave electronic-structure calculations using graphics-processing units, Maintz, Eck, Dronskowski
- VASP on a GPU: application to exact-exchange calculations of the stability of elemental boron, Hutchinson, Widom
- Accelerating VASP Electronic Structure Calculations Using Graphic Processing Units, Hacene, Anciaux-Sedrakian, Rozanska, Klahr, Guignon, Fleurat-Lessard

U of Chicago

Target Workloads

- Silica ("medium")
 - 7 Å thick slab of amorphous silica, 240 atoms (Si₆₈O₁₄₈H₂₄)
 - RMM-DIIS (ALGO = VERYFAST)

Nial-MD ("large")

- Liquid metal molecular dynamics sample of Nickel-based superalloy
- 500 atoms, 9 chemical species total
- Blocked Davidson (ALGO = NORMAL)

INTERFACE ("large")

- Interface of platinum metal with water
- 108 Pt atoms, and 120 water molecules (468 atoms)
- Blocked Davidson & RMM-DIIS (ALGO = FAST)

RUNTIME DISTRIBUTION FOR SILICA

Time in sec for 1 K40 GPU + 1 lvyBridge core

VASP 5.4.1 w/ Patch#1(Haswell & K80)

March 2016

VASP Interface Benchmark

Running VASP version 5.4.1

The blue node contains Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs

The green nodes contain Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs + Tesla K80 (autoboost) GPUs

"[Old Data]" = pre-Bugfix: patch #1 for vasp.5.4.1.05Feb15 which yield up to 2.7X faster calculations. (patch #1 available at VASP.at)

VASP Silica IFPEN Benchmark

Running VASP version 5.4.1

The blue node contains Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs

The green nodes contain Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs + Tesla K80 (autoboost) GPUs

"[Old Data]" = pre-Bugfix: patch #1 for vasp.5.4.1.05Feb15 which yield up to 2.7X faster calculations. (patch #1 available at VASP.at)

RMM-DIIS (ALGO=Veryfast)

VASP Si-Huge Benchmark

Running VASP version 5.4.1

The blue node contains Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs

The green nodes contain Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs + Tesla K80 (autoboost) GPUs

"[Old Data]" = pre-Bugfix: patch #1 for vasp.5.4.1.05Feb15 which yield up to 2.7X faster calculations. (patch #1 available at VASP.at)

VASP SupportedSystems Benchmark

Running VASP version 5.4.1

The blue node contains Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs

The green nodes contain Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs + Tesla K80 (autoboost) GPUs

"[Old Data]" = pre-Bugfix: patch #1 for vasp.5.4.1.05Feb15 which yield up to 2.7X faster calculations. (patch #1 available at VASP.at)

VASP NiAl-MD Benchmark

Running VASP version 5.4.1

The blue node contains Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs

The green nodes contain Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs + Tesla K80 (autoboost) GPUs

"[Old Data]" = pre-Bugfix: patch #1 for vasp.5.4.1.05Feb15 which yield up to 2.7X faster calculations. (patch #1 available at VASP.at)

VASP B.hR105 Benchmark

Running VASP version 5.4.1

The blue node contains Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs

The green nodes contain Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs + Tesla K80 (autoboost) GPUs

"[Old Data]" = pre-Bugfix: patch #1 for vasp.5.4.1.05Feb15 which yield up to 2.7X faster calculations. (patch #1 available at VASP.at)

Hybrid Functional with blocked Davicson (ALGO=Normal)

VASP B.aP107 Benchmark

Running VASP version 5.4.1

The blue node contains Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs

The green nodes contain Dual Intel Xeon E5-2698 v3@2.3GHz (Haswell) CPUs + Tesla K80 (autoboost) GPUs

"[Old Data]" = pre-Bugfix: patch #1 for vasp.5.4.1.05Feb15 which yield up to 2.7X faster calculations. (patch #1 available at VASP.at)

Hybrid functional calculation (exact exchange) with blocked Davidson. No KPoint parallelization.

Hybrid Functional with blocked Davicson (ALGO=Normal)

GPU-ACCELERATED MOLECULAR DYNAMICS APPS

Green Lettering Indicates Performance Slides Included

×ACEMD	×GPUGrid.net	► MELD
×AMBER	×GROMACS	NAMD
×CHARMM	×HALMD	OpenMM
XDESMOND	×HOOMD-Blue	PolyFTS
×ESPResSO	×LAMMPS	
×Folding@Home	×mdcore	

NEW GPU FEATURES IN NAMD 2.11

Selected Text from the NAMD website

- GPU-accelerated simulations up to twice as fast as NAMD 2.10
- Pressure calculation with fixed atoms on GPU works as on CPU
- Improved scaling for GPU-accelerated particle-mesh Ewald calculation
 - CPU-side operations overlap better and are parallelized across cores.
- Improved scaling for GPU-accelerated simulations
 - Nonbonded force calculation results are streamed from the GPU for better overlap.
- NVIDIA CUDA GPU-acceleration binaries for Mac OS X

NAMD 2.11 IS UP TO 2X FASTER

NAMD 2.10 & NAMD 2.11 contain Dual Intel E5-2697 v2@2.7GHz (IvyBridge) CPUs + 2x Tesla K80 (autoboost) GPUs

NAMD 2.11 APOA1 ON 1 AND 2 NODES

Running NAMD version 2.11

The blue nodes contain Dual Intel E5-2698 v3@2.3GHz (Haswell) CPUs

The green nodes contain Dual Intel E5-2698 v3@2.3GHz (Haswell) CPUs + Tesla K80 (autoboost) GPUs

NAMD 2.11 APOA1 ON 4 AND 8 NODES

Running NAMD version 2.11

The blue nodes contain Dual Intel E5-2698 v3@2.3GHz (Haswell) CPUs

The green nodes contain Dual Intel E5-2698 v3@2.3GHz (Haswell) CPUs + Tesla K80 (autoboost) GPUs

NAMD 2.11 STMV ON 1 AND 2 NODES

Running NAMD version 2.11

The blue nodes contain Dual Intel E5-2698 v3@2.3GHz (Haswell) CPUs

The green nodes contain Dual Intel E5-2698 v3@2.3GHz CPUs (Haswell) + Tesla K80 (autoboost) GPUs

NAMD 2.11 STMV ON 4 AND 8 NODES

Running NAMD version 2.11

The blue nodes contain Dual Intel E5-2698 v3@2.3GHz (Haswell) CPUs

The green nodes contain Dual Intel E5-2698 v3@2.3GHz CPUs (Haswell) + Tesla K80 (autoboost) GPUs

AMBER 14

JAC on K40s, K80s and M6000s

Running AMBER version 14

The blue node contains Dual Intel E5-2698 v3@2.3GHz, 3.6GHz Turbo CPUs

The green nodes contain Dual Intel E5-2698 v3@2.3GHz, 3.6GHz Turbo CPUs + either NVIDIA Tesla K40@875Mhz, Tesla K80@562Mhz (autoboost), or Quadro M6000@987Mhz GPUs

Cellulose on K40s, K80s and M6000s

Running AMBER version 14

The blue node contains Dual Intel E5-2698 v3@2.3GHz, 3.6GHz Turbo CPUs

The green nodes contain Dual Intel E5-2698 v3@2.3GHz, 3.6GHz Turbo CPUs + either NVIDIA Tesla K40@875Mhz, Tesla K80@562Mhz (autoboost), or Quadro M6000@987Mhz GPUs

Factor IX on K40s, K80s and M6000s

Running AMBER version 14

The blue node contains Dual Intel E5-2698 v3@2.3GHz, 3.6GHz Turbo CPUs

The green nodes contain Dual Intel E5-2698 v3@2.3GHz, 3.6GHz Turbo CPUs + either NVIDIA Tesla K40@875Mhz, Tesla K80@562Mhz (autoboost), or Quadro M6000@987Mhz GPUs

JAC on M40s

Running AMBER version 14

The blue node contain Single Intel Xeon E5-2698 v3@2.30GHz (Haswell) CPUs

Cellulose on M40s

Running AMBER version 14

The blue node contain Single Intel Xeon E5-2698 v3@2.30GHz (Haswell) CPUs

Myoglobin on M40s

Running AMBER version 14

The blue node contain Single Intel Xeon E5-2698 v3@2.30GHz (Haswell) CPUs

Nucleosome on M40s

Running AMBER version 14

The blue node contain Single Intel Xeon E5-2698 v3@2.30GHz (Haswell) CPUs

GROMACS 5.1

October 2015

3M Waters on K40s and K80s

3M Waters on Titan X

Running **GROMACS** version 5.1

The blue node contains Dual Intel E5-2698 v3@2.3GHz CPUs

The green nodes contain Dual Intel E5-2698 v3@2.3GHz CPUs + GeForce GTX TitanX@1000Mhz GPUs

TESLA P100 ACCELERATORS

Tesla P100 for NVLink-enabled Servers

5.3 TF DP · 10.6 TF SP · 21 TF HP 720 GB/sec Memory Bandwidth, 16 GB

Tesla P100 for PCIe-Based Servers

4.7 TF DP · 9.3 TF SP · 18.7 TF HP Config 1: 16 GB, 720 GB/sec Config 2: 12 GB, 540 GB/sec

PAGE MIGRATION ENGINE

Simpler Parallel Programming Virtually Unlimited Data Size Performance w/ data locality

EXTRAORDINARY STRONG SCALING

One Strong Node Faster Than Lots of Weak Nodes

CPU: Dual Socket Intel E5-2680v3 12 cores, 128 GB DDR4 per node, FDR IB VASP 5.4.1_05Feb16, Si-Huge Dataset. 16, 32 Nodes are estimated based on same scaling from 4 to 8 nodes AMBER 16 Pre-release, CRSPR based on PDB ID 5f9r, 336,898 atoms

MASSIVE LEAP IN PERFORMANCE

CPU: Xeon E5-2697v4, 2.3 GHz, 3.6 GHz Turbo

Caffe Alexnet: batch size of 256 Images; VASP, NAMD, HOOMD-Blue, and AMBER average speedup across a basket of tests

TCO OVERVIEW

Sources: Microsoft Research on Datacenter Costs

NVIDIA DGX-1 WORLD'S FIRST DEEP LEARNING SUPERCOMPUTER

42.5 TFLOPS FP64/85 TFLOPS FP32/170 TFLOPS FP16 8x Tesla P100 16GB NVLink Hybrid Cube Mesh Accelerates Major AI Frameworks Dual Xeon 7 TB SSD Deep Learning Cache Dual 10GbE, Quad IB 100Gb 3RU - 3200W

THANK YOU! Q&A: WHAT CAN I HELP YOU BUILD?

