

Case of predictive maintenance by analysis of acoustic data in an industrial environment

IoT impact in Manufacturing for the 10 next years

IoT use cases

Examples of use cases:

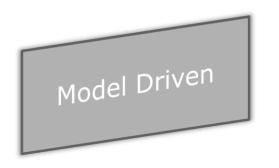
- Production equipment management
- Building management
- Inventory management
- Delivery tracking
- Production of customized products

Examples of use cases:

- Remote product upgrades
- Remote maintenance
- Data insights for engineering

New business models

Examples of use cases:


- Pay per use models
- Lease + maintain vs. sell

IoT will have pervasive impact in Manufacturing with a \$2.5 trillion* impact & over 50% around operational excellence (TBC!)

*by 2025. Source: McKinsey

What's new?

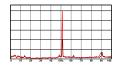
Sources

Sensors, PLC, Machine data Physical Models Simulation behaviors Empirical models, Tests data Sensors, PLC, Machine data Operators data Quality data, TRS, Maintenance Raw material, Traceability, Tests

Treatment

Scientific software
Pre&Post treatment
Adapt the model to real behaviors
Thresholds, alarms
CAX

Statistic analysis
Machine Learning, Clustering,
Forecast, Decision trees
Linear regressions, Neuronal
network


Infra

HPC LSF Family, PBS, SGE, SLURM Dedicated infrastructure NoSQL DB, Distributed computing framework Cloud

What

Physical engineering: Structural, Thermal, CFD, EM, Accoustic, Vibration, ...

Probability
Predictive models
Recommendations



Manufacturing
Intelligence &
Predictive
Maintenance

Manufacturing Intelligence

Predictive Maintenance

Use case

Monitor and control production units based on factual decisions defined by all collected data

Predict potential breakdowns of a machine through data analysis

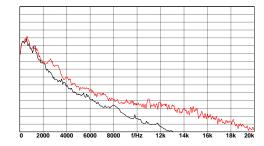
Business Values

Reduce non quality costs
Decrease Non TRS
Master standard cycle time
Optimize consumption (raw material, energy...)

Decrease Non TRS Reduce maintenance costs

Output

Production teams will quickly identify key factors impacting production objectives


Maintenance teams will anticipate preventive activities

How

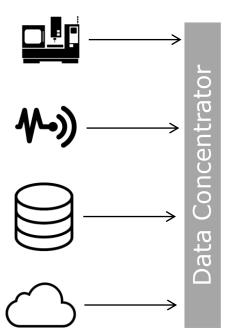
Exhaustive Mathematical method Dashboards Action plan Predictive models
Dashboard
Recommendations

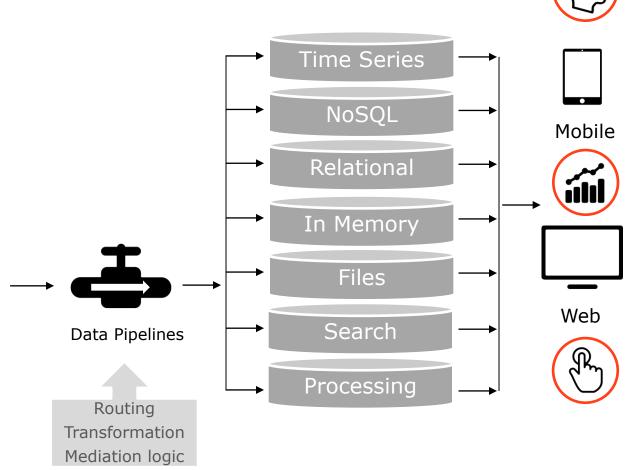
Troubleshooting by data acoustic analytics

Background

- Our Customer operates production units of energy located in France.
- Objective: decrease the maintenance costs by optimizing the maintenance activities and machines availability rates.
 - Experiment acoustic and vibration troubleshooting
 - Implement a global predictive maintenance platform
- The target machine for the first stage is a high-powered air compressor. It represents a strategic and critical asset for the production units.

Solution


- The noise and vibration troubleshooting are used to identify mechanical, electrical, hydraulics and aerodynamics problems. The method is based on a comparison of noise and vibration spectra to an acoustic and vibration database.
- Data storage:
 - The measurement data with an operational context
 - Maintenance & Machine Data
- Platform:
 - Acquisition & collect: open, scalable, secure
 - Analytics platform hosted on a cloud


Benefits

- Rapid implementation: platform available after 1 month, models ready to use after 2 months
- Relevant statistic model supported by a model driven approach
- Scalable and secured solution based on an IIOT architecture
- Hybrid cloud with operational treatments in the customer premises and analytics in the cloud

Data Sources - IIoT

Data Ingestion – IIoT

Data Lake

Analysis & Usage

IIoT Platform eObject: from edge to analytics

1. IoT MODULES

2. FUNCTIONS

3. DESCRIPTION



4 FEATURES

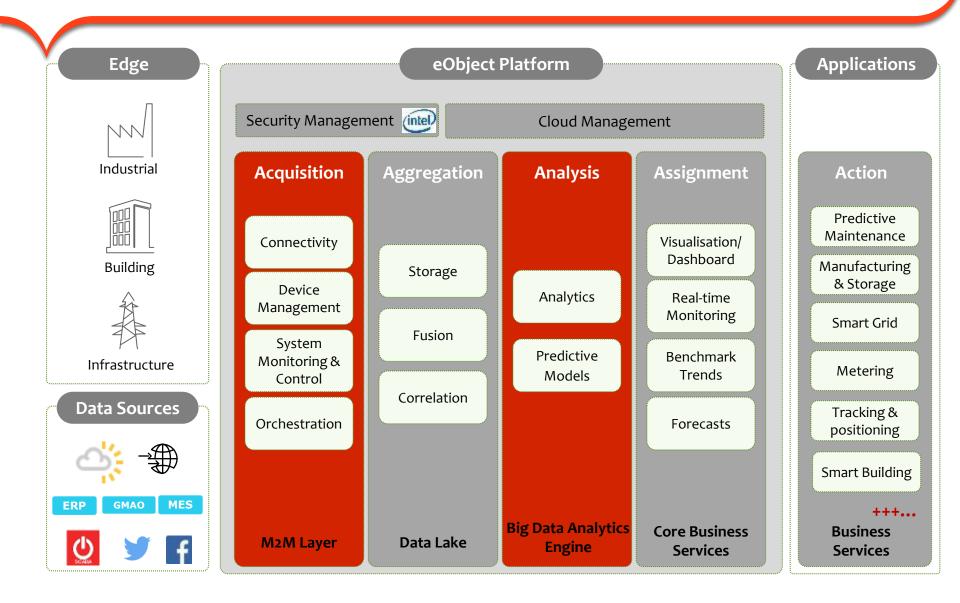
Data acquisition

2 e-OBJECT Cloud

Data storage & administration

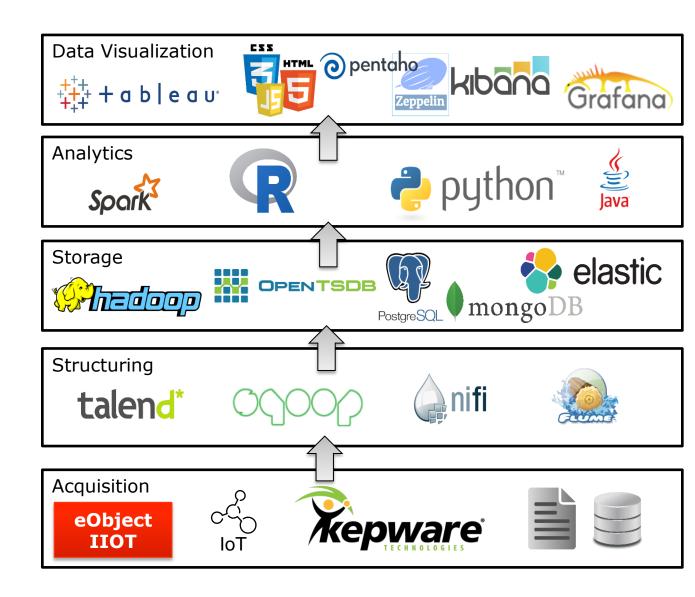
- A Middleware Platform collects & stores of large amount of data.
- Devices & sensors managing services.
- Hosted in a public or private cloud

e-OBJECT
Analytics


Data analysis & visualization

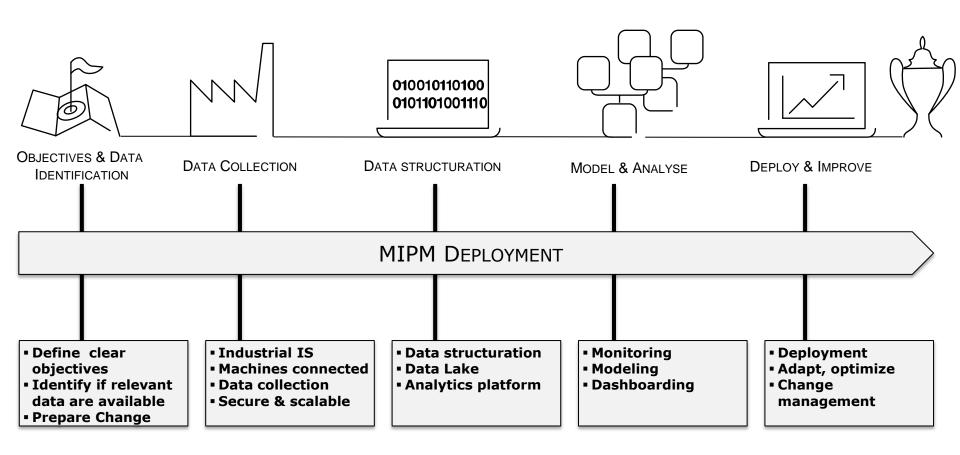
- An Analytics Platform analyses data from multi sources/multi files.
- Data are transformed into information displayed on a visual interface.

IoT Architecture



Build on microservices

Choose the right service for the right use


Interconnect them to build your application

Use the best of every world

MIPM Deployment Phases

Contact information

Philippe
DUHEM
IoT & Mobility Business
Developer

philippe.duhem@sogeti.com

Tél.: +33 34 46 91 52

Mob: +33 (0)6 32 94 09 55

SOGETI High Tech Bat. Aeropark 3 Chemin Laporte 31300 TOULOUSE

About Sogeti High Tech *Engineering excellence & Digital Manufacturing*

With an experience of over 25 years, Sogeti High Tech makes its skills and know-how available to Aeronautics- and Space-, Defense-, Energy-, Telecoms & media-, Railway- and Life Sciences industries.

To be more responsive to market needs, Sogeti High Tech has developed a range of expertise based on its R&D department, High Tech Labs, a real innovations incubator.

In close partnership with its customers, Sogeti High Tech develops and manufactures solutions with a high added value in the areas of Digital Manufacturing.

Subsidiary company of Capgemini Group, Sogeti High Tech is a center of excellence in System Engineering, Physical Engineering, Software Engineering, Testing, Consulting services and Industrial Information Technology.

