

Centro Nacional de Análisis Genómico

Where are the Bottlenecks of Genome Analysis Today?

Teratec

Ecole Polytechnique, Palaiseau, F

Ivo Glynne Gut

29.06.2016

centre nacional d'anàlisi genòmica centro nacional de análisis genòmico

The genomehenge

at 30x coverage

Equipment

- 12 Illumina HiSeq2000/2500/4000
- 1 Illumina MiSeq
- 4 Illumina cBots
- 3 Oxford Nanopore Minions
- Caliper/Eppendorf liquid handling robotics
- Fluidigm C1
- Bull 3500 core cluster super computer
- Maxeler Data Flow Engine
- 200 Tflops
- 7.5 petabyte disc space/tape
- Barcelona Supercomputing Center (10 x 10 Gb/s)

Size of a Human Genome Sequence

- Twice 3.200.000.000 nucleotides
- One human genome requires sequencing 100.000.000.000 nucleotides (T,C,G or A)
- If one nucleotide is a corn of rice this would fill TWO Olympic size swimming pools

Sequencing of a Human Genome

- 1.000.000.000 fragments of 100 nucleotides
- Alignment against the reference sequence of the human genome
- Identification of the deviations from the reference
- Computational requirements ~ 2000 CPUh per human genome

nature

PERSPECTIVES

International network of cancer genome projects

The International Cancer Genome Consortium*

The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.

Nature 464, 993-998 (15.04.2010)

International Cancer Genome Consortium

83 Projects/18 Countries

Sampling structure

Garbage In – Garbage Out Paradigm

GC bias of different libraries

Ivo Buchhalter, DKFZ

BM1.2 Somatic Single-base Mutations (SSM)

International
 Cancer Genome
 Consortium

Somatic Insertion/deletion Mutations (SIM)

16 submissions

BM 1.2 SSMs Sensitivity and Specificity

precision

SIMs Sensitivity and Specificity

ICGC Verification/Validation Group

ARTICLE

Received 16 Jun 2015 | Accepted 23 Oct 2015 | Published xx xxx 2015

DOI: 10.1038/ncomms 10001 OPEN

A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

Tyler S. Alioto^{1,2,*}, Ivo Buchhalter^{3,4,*}, Sophia Derdak^{1,2}, Barbara Hutter⁴, Matthew D. Eldridge⁵, Eivind Hovig^{6,7}, Lawrence E. Heisler⁸, Timothy A. Beck⁸, Jared T. Simpson⁸, Laurie Tonon⁹, Anne-Sophie Sertier⁹, Ann-Marie Patch^{10,11}, Natalie Jäger^{3,12}, Philip Ginsbach³, Ruben Drews³, Nagarajan Paramasivam³, Rolf Kabbe³, Sasithorn Chotewutmontri¹³, Nicolle Diessl¹³, Christopher Previti¹³, Sabine Schmidt¹³, Benedikt Brors⁴, Lars Feuerbach⁴, Michael Heinold⁴, Susanne Gröbner¹⁴, Andrey Korshunov¹⁵, Patrick S. Tarpey¹⁶, Adam P. Butler¹⁶, Jonathan Hinton¹⁶, David Jones¹⁶, Andrew Menzies¹⁶, Keiran Raine¹⁶, Rebecca Shepherd¹⁶, Lucy Stebbings¹⁶, Jon W. Teague¹⁶, Paolo Ribeca^{1,2}, Francesc Castro Giner^{1,2}, Sergi Beltran^{1,2}, Emanuele Raineri^{1,2}, Marc Dabad¹², Simon C. Heath¹², Marta Gut¹², Robert E. Denroche⁸, Nicholas J. Harding⁸, Takafumi N. Yamaguchi⁸, Akihiro Fujimoto¹⁷, Hidewaki Nakagawa¹⁷, Victor Quesada¹⁸, Rafael Valdés-Mas¹⁸, Sigve Nakken⁶, Daniel Vodák^{6,19}, Lawrence Bower⁵, Andrew G. Lynch⁵, Charlotte L. Anderson^{5,20}, Nicola Waddell^{10,11}, John V. Pearson^{10,11}, Sean M. Grimmond^{10,21}, Myron Peto²², Paul Spellman²², Minghui He²³, Cyriac Kandoth²⁴, Semin Lee²⁵, John Zhang^{25,26}, Louis Létourneau²⁷, Singer Ma²⁸, Sahil Seth²⁶, David Torrents²⁹, Liu Xi³⁰, David A. Wheeler³⁰, Carlos López-Otín¹⁸, Elias Campo³¹, Peter J. Campbell¹⁶, Paul C. Boutros^{9,32}, Xose S. Puente¹⁸, Daniela S. Gerhard³³, Stefan M. Pfister^{14,34}, John D. McPherson^{8,32}, Thomas J. Hudson^{8,32,35}, Matthias Schlesner³, Peter Lichter^{36,37}, Roland Eils^{3,37,38,39,**}, David T.W. Jones^{40,**} & Ivo G. Gut^{12,**}

As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to $\sim 100 \times$ shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.

Value of data and its footprint

Image	fastq	bam	vcf
	atcgagctttagagaggat	atcgagctttagagaggat	t/c
	ggcgatttagtagcagggg	tcgagctttagagaggata	t/-
	atcgagctttccttttaggat	cgagctttagagaggataa	a/g
	ctcaagctttaggtaaggcc	gagctttagagaggataaa	t/c
	ctcaagggaaagtaagtttc	agctttagagaggataaag	t/a

100um Random array of clusters

Value of data and its footprint

Image

100um Random array of clusters

fastq

atcgagctttagagaggat ggcgatttagtagcagggg atcgagctttccttttaggat ctcaagctttaggtaaggcc ctcaagggaaagtaagttc

bam

atcgagctttagagaggat tcgagctttagagaggata cgagctttagagaggataa gagctttagagaggataaa agctttagagaggataaa

Identifyability

Identifyability

RD-CONNECT UPDATE: MARCH 2016

Rare Diseases

- 1 in 2000 people of the general population
- ~ 9000 rare diseases
- ~ 12% of the population is affected by a rare disease

• Rare disease patients have an interest that their data is used/shared

Data in the RD-Connect platform

(metabolomics, transcriptomics, proteomics...) (biobank databases)

Whole RD-Connect Platform Architecture Overview 2016

Genomics platform architecture

RD-Connect Genomics Platform

ů	Search Samples								LOG OUT 🕞		
3	tt			Chrom		Pos			Ref	Alt	
	Genomics RESET RUN QUERY			1		1730219	9		т	G	
	ariant Type: coding high moderate Population: gp1_af exac SNV>MT: A D SNV>SIFT: D SNV>PP2: D P			Functional	Predic	tive Population	Samples	ALFA Diseasecan	1		
	Sample selection ?	>	^	Gene Name	Gene BioType	Transcript ID	Transcript BioType	Effect	Effect	Functio	'n
	Variant Type ?	>		MFAP2	CODING	ENST0000375535	protein_coding	NON_SYNONYMOUS	CODING MODER	RATE MISSER	45
	Population ?	>		MFAP2	CODING	ENST0000375534	protein_coding	NON_SYNONYMOUS	CODING MODER	RATE MISSER	45
	SNV Effect Prediction ?	>		MFAP2	CODING	ENST00000438542	protein_coding	NON_SYNONYMOUS	CODING MODER	RATE MISSEN	45
	Gene and Chromosome Coordinates	>		•						,	÷
tesu	ts 5 EXPORT ALL First Previous 1 Next Last		٣								
mples											

Chrom	Pos	dbSNP	Ref	Alt	GTE000010	GTECCOCCA	GTEcocos?	INDEL	Gene Name	Effect Impact	CADD	SIFT	PP2	мт	ExAC	1000GP AF
1	17302195		т	G	T/G	T/T	T/T		MFAP2	MODERATE	21.1	D	Ρ	D	1.0E-4	0
13	77835365		G	A	G/A	G/G	G/G		MYCBP2	MODERATE	24.7	т	D	D	٥	0
17	9066234		A	c	A/C	A/A	A/A		NTN1	MODERATE	27.5	D	Ρ	D	0.0017	0
17	41584471		G	с	G/C	G/G	G/G		DHX8	MODERATE	16.3	т	в	D	٥	0
19	39062815		G	с	G/C	G/G	G/G		RYR1	MODERATE	16.8	D	D	D	0	0

D. Piscia, J. Protasio, S. Laurie, A. Papakonstantinou, S. Beltran

RD-Connect Genomics Platform

Variants

nnect

Color coding of pathogeneicity predictors

Chrom	Pos	dbSNP	Ref	Alt	Candidate ?	GT ^{E000010}	GT ^{E000036}	GT ^{E000037}	INDEL	Gene Name	Effect Impact	CADD	SIFT	PP2	МТ	ExAC	1000GP AF
1	12855648	rs200816125	A	G	0 add	A/G	A/A	A/A		PRAMEF1	MODER	8.1	т	в	Ν	4.0E 4	0
1	17302199		т	G	0 add	T/G	тл	тл		MFAP2	MODERATE	21.1	D	Ρ	D	1.0E-4	0
13	77835365		G	A	0 add	G/A	G/G	G/G		MYCBP2	MODERATE	24.7	т	D	D	0	0
17	9066234		A	с	0 add	A/C	A/A	A/A		NTN1	MODERATE	27.5	D	Ρ	D	0.0017	D
17	41584471		G	с	0 add	G/C	G/G	G/G		DHX8	MODERATE	16.3	т	в	D	0	0
19	39062815		G	с	0 add	G/C	G/G	G/G		RYR1	MODERATE	16.8	D	D	D	0	0
19	54746382	rs201396172	С	т	0 add	сл	C/C	C/C		LILRA6 LILRB3	MODERAN	1.3	т	в	P	27E-4	0

D. Piscia, J. Protasio, S. Laurie, A. Papakonstantinou, S. Beltran

Variants

Variants tagged in RD-Connect

Chrom	Pos	dbSNP	Ref	Alt	Candidate ?	GTE000010	GT ^{E000036}	GT ^{E000037}	INDEL	Gene Name	Effect Impact	CADD	SIFT	PP2	мт	ExAC	1000GP AF
1	12855648	rs200816125	A	G	0 add	A/G	A/A	A/A		PRAMEF1	MODERATE	8.1	т	в	N	4.0E-4	0
1	17302199		т	G	0 add	T/G	тл	тл		MFAP2	MODERATE	21.1	D	Р	D	1.0E-4	0
13	77835365		G	Α	0 add	G/A	G/G	G/G		MYCBP2	MODERATE	24.7	т	D	D	0	0
17	9066234		A	с	3 this va	riant has bee	n tagged 3 ti	me(s) at:		NTN1	MODERATE	27.5	D	Р	D	0.0017	0
17	41584471		G	с	0 200	361 with sign	i icance path	nogenic		DHX8	MODERATE	16.3	т	в	D	0	0
19	39062815		G	С	0	00002 with 9	ificance be	enign nogenic		RYR1	MODERATE	16.8	D	D	D	0	0
19	54746382	rs20139617	c	т	0 add		Ą			LILRA6 LILRB3	MODERATE	1.3	т	в	Ρ	2.0E-4	0

RDConnect

D. Piscia, J. Protasio, S. Laurie, A. Papakonstantinou, S. Beltran

RD-Connect Genomics Platform

19												
Result	S 7 EXPOR	TALL			First	Identifying variant as causal Researcher username						
Variants						Date	1					
		Та	ga	var	iant	07/03/2016						
Chrom	Pos	dbSNP	Ref	Alt	Candidate ?	Sample	₀DD	SIFT	PP2	мт	ExAC	1000GP AF
1	12855648	rs200816125	A	G	0 add	Mode of inheritance	1	т	в	N	4.0E-4	0
1	17302199		т	G	0 add	x-linked dominant	.1	D	Р	D	1.0E-4	0
13	77835365		G	A	0 add	somatic ClinVar categories	.7	т	D	D	0	0
17	9066234		A	С	0 add	Clinical significance likely pathogenic	>	D	Р	D	0.0017	0
17	41584471		G	с	0 add	Pubmed IDs	.3	т	в	D	0	0
19	39062815		G	С	0 add	Comments (evidence and/or experiments done and any other relevant details)	.8	D	D	D	0	0
19	54746382	rs201396172	с	т	0 add		3	т	в	Р	2.0E-4	0
						CANCEL SUBMIT	Dı	ota	sio	C I	auri	0.1
RD	Co	nnect	5			Papak	ons	tant	ino,	3. I u, S	. Belt	ran

24

A beacon is a simple web service that answers questions:

Question: Is this variant present in your dataset?

Answer: Yes/No

RD Connect

Posted: May 29, 2015

Beacon Project

Being implemented on the website of the world's top genomic organizations to test the willingness of international sites to share genetic data.

About this Project

The **Beacon project** is a project to test the willingness of international sites to share genetic data in the simplest of all technical contexts. It is defined as a simple public web service that any institution can implement as a service. The service is designed merely to accept a query of the form "Do you have any genomes with an 'A' at position 100,735 on chromosome 3" (or similar data) and responds with one of "Yes" or "No." A site offering this service is called a "beacon". This open web service is designed to be technically simple, easy to implement, and to not return privacy violating information.

http://ga4gh.org/#/beacon

GA4GH Beacon Network

25				
https://be	eacon-netwo	ork.org//#/		
GRCh37 -	13 : 3295420	08 A>T		Search
Response Found Not Found	All None 8 43	EBI -	1000 Genomes Proje	Not Found Ct,
Organization	8 All None	ExAC Broad Ins	titute	Not Found
AMPLab, U BGI BioReferen	Jniversity of C ce Laboratories	ICGC Ontario In	- Cancer Projects stitute for Cancer Research	Not Found
Broad Insti Centre for C CNAG	tute Genomic Regu	Kavia Institute for	l ľ or Systems Biology	Found
Curoverse DNAstack EMBL Euro Global Allia	opean Bioinfor ance for Geno	S NHLE	3I Exome Sequence P Center for Biotechnology Information	Not Found Proj
 Google Institute for Mike Lin 	r Systems Biol	RD-C	connect	Not Found
National Ce	enter for Biote	K Shroor		Not Found

26

The MatchMaker Exchange (MME, IRDiRC, GA4GH)

http://www.matchmakerexchange.org/

HOW TO GET STARTED

OUR RESOURCE LIBRARY -

LIBRARY - \star E

★ EXCHANGE PARTICIPANTS 🛛 🖾 CONTACT US

Matchmaker Exchange

Genomic discovery through the exchange of phenotypic & genotypic profiles

- Data sits isolated in databases
- Sometimes difficult to find another case with a variant in the same gene
- MME is working towards a federated platform to facilitate matching of cases with similar phenotypic and genotypic profiles.

RD@Connect

Human Mutation <u>Volume 36, Issue 10, pages 915-921, 17 SEP 2015 DOI: 10.1002/humu.22858</u> http://onlinelibrary.wiley.com/doi/10.1002/humu.22858/full#humu22858-fig-0001

The MatchMaker Exchange (MME, IRDiRC, GA4GH)

27

http://onlinelibrary.wiley.com/doi/10.1002/humu.22858/full#humu22858-fig-0001

Data in the RD-Connect platform

Final Remarks

- Importance of standards
- Provenance of data is important
- With assured quality there is no need for storing raw data on high end, spinning disks. Tape storage is cheaper and saves on electricity.
- Primary analysis close to large volume data bandwidth
- Who is the data user? Clinician (competence web-service or command line?)
- Data sharing increases benefit to patient
- Rare disease is a use case for omics data in other diseases

cnag

baldiri reixac, 4 pcb - tower i, 2nd floor 08028 barcelona

t +34 93 4020542 f +34 93 4037279 www.cnag.eu

