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Forewords

HiePACS objectives: Contribute to the design of effective tools for
frontier simulations arising from challenging research and industrial
multi-scale applications towards extreme computing

@ Study and design of novel numerical algorithms for emerging
computing platforms

o Analyse their possible weaknesses and possible remedies
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Scientific context: numerical linear algebra

Goal: solving Ax = b, where A is sparse

Appears in many academic and industrial simulation codes for
various engineering applications: accelerator physics, chemical
process simulations, earth and environmental sciences, fluid flow,
fusion energy, structural analysis, structural biology, ...

@ Still promising solution techniques based on Krylov subspace
methods (Aleksei Nikolaevich Krylov, 1863-1945)

@ Oldest but still effective solver : the conjugate gradient

method (CG) [M .R. Hestenes and E. Stiefel, JNRBS, 1952]
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1. Improving attainable accuracy

2. Detecting soft error in the Conjugate Gradient method

-
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Improving attainable accuracy
Original algorithm at a glance

1: for i =0,... do
2: si == Ap;

3 o = r,-Tu,-/s,-Tp,-

4 Xi+1 ‘= Xi + Q;pj

b: rit1 = ri — QS;j

6:  uip1:=Mlr

7 B = i/l g
8  pit1:= Uir1 + Biy1pi
9: end for
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Improving attainable accuracy
Original algorithm at a glance

1: for i =0,... do
2: si = Ap;

3 Q= r,-Tu;/s,-Tp;

4 Xi+1 ‘= Xj + Q;p;

5 riqy1 == ri — Q;Sj

6: Uip1 = M_ll’,'_H

7 Bipr = rlquia/r v
8  pit1:= Uit1 + Biv1pi
9: end for

o Parallel performance bottleneck: 2 separated synchronizing
scalar-products
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Improving attainable accuracy
Original algorithm at a glance

1: for i =0,... do
2: si = Ap;

3 o = I’,-TU,'/S,-Tp,'

4 Xji+1 1= Xj + aipj

5 lig1 = ri — QSj

6: Ujy1 := M‘lr,-+1

7 Bigr =l qui/r v
8  piy1 = Uip1 + Bit1pi
9: end for

o Parallel performance bottleneck: 2 separated synchronizing
scalar-products

@ Many variants have been designed to overcome this drawback,
one of the most recent and promising is pipelined CG
[P. Ghysels and W. Vanroose, ParCo, 2014]

.
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Improving attainable accuracy
Pipelined CG - p-CG

1: for i=0,... do

l&l‘zu’a——

Q= r,-Tu,- Bi = W,-Tu,-

mi = Mtw; vii=Am;

zi = v+ Bizi-1  qi == mj+ figi—1
sii=w;+ fBisi-1 pi = ui + Bipi-1
Xit+1 1= Xj + Qipj i1 = i — Q;Sj
Uiyl '= Uj — &jq; Wjq1 i= Wj — Qz;

end for

@ A single non-synchronizing double scalar-products
— possible overlap of mat-vec and preconditioning with

non-blocking reduction

A few challenges revisited at scale



Improving attainable accuracy

performance: 1 Mdof 2D Poisson

time
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nr of nodes (x12 MPI procs)

@ In sequential extra computation makes p-CG (green curve)
slower

@ Quickly parallel p-CG outperforms regular parallel CG (blue

curve)
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Improving attainable accuracy

Parallel performance: 1 Mdof 2D Poisson
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@ In sequential extra computation makes p-CG (green curve)
slower

@ Quickly parallel p-CG outperforms regular parallel CG (blue
curve)
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Improving attainable accuracy

Parallel performance: 1 Mdof 2D Poisson
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@ In sequential extra computation makes p-CG (green curve)
slower

@ Quickly parallel p-CG outperforms regular parallel CG (blue
curve)

; @ Teasing: purple curve
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Improving attainable accuracy

Why shall we mind 7
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@ Attainable accuracy of p-CG worse than classical CG

o Known/expected behaviour for three-term recurrence variants
[M.H.Gutknecht, Z.Strako$, SIMAX, 2000]

.
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Improving attainable accuracy
Possible remedy

@ Develop a (tedious) rounding-error analysis based on known
results (see e.g. N. Higham, SIAM book, 2002]) to compute the
propagation of local rounding errors in pipelined CG

fllaop b) =(aop b)(1+e€), e <

firi = (b—AXiy1) — it
= b—A(xi + a;pi + %) — (F; — @5 + 67
= fi—agi —Ad — o]

@ Design a residual replacement strategy [H. van der Vorst, Q. Ye,
SISC, 2000]

I < VIF] and  [[fivall > V[Tl
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Improving attainable accuracy

Features of the new algorithm

At a negligible extra computational cost

@ Attainable accuracy is recovered

bcsstk18 with Jacobi preconditioner
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Improving attainable accuracy

Features of the new algorithm

At a negligible extra computational cost
@ Attainable accuracy is recovered

e Parrallel performance not “much affected” (purple vs green)
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Improving attainable accuracy

Not ended story

A few still open questions

@ Analysis of the convergenve delay

@ Relax some theoretical hypothesis that might not hold in
practice
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Detecting soft error in the Conjugate Gradient method
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Detecting soft error in the Conjugate Gradient method
Why soft errors occur?

What is soft error?

@ Possible causes : voltage reduction, electricity fluctuations,
cosmic particle effects, etc...

@ Appears on: memories, registers, pipeline of the processor

l lrrzia N challenges revisited at scale 14 /23
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Why soft errors occur?

What is soft error?

@ Possible causes : voltage reduction, electricity fluctuations,
cosmic particle effects, etc...

@ Appears on: memories, registers, pipeline of the processor

Extreme scale platforms

SIZE OF POSSIBLE
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Detecting soft error in the Conjugate Gradient method

Why soft errors occur?

What is soft error?

@ Possible causes : voltage reduction, electricity fluctuations,
cosmic particle effects, etc...

@ Appears on: memories, registers, pipeline of the processor

Extreme scale platforms

SIZEOF  POSSIBLE = G AREA
DEVICES  SOFT ERROR COMPONENTS EFFECTED BY
RATES RADIATION
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Detecting soft error in the Conjugate Gradient method
How soft errors occur?

1: for i =0,... do We consider transient soft

3 a:=r"u/s"p @ in the most

4 Xi+1 ‘= Xj + ap; computationally

5  riy1:=1r —as expensive kernels

6 (u,-,l = Mflr,-H) @ other “cheaper” kernels
7 Ba= ,-11Ui+1/r,-TUi could be protected by
8  pit1:i= U1+ Pp; redundancy

9: end for

-
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Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

Effect on
the convergence

Converged

Not Converged

10°

,_.
o,
e

Relative Error

10 Acc

10
0 200 400 600 800 1000

Iterations

A few challenges revisited at scale




Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

Effect on
the convergence

Converged

Not Converged

10
10°
5
=1
3
£
=
&
10 AcCC
107 : : ‘
0 200 400 600 800 1000

Iterations

A few challenges revisited at scale




Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

Effect on
the convergence

Converged

Not Converged

10
10°
s
=
=
£
El
&
10l Acc
107 : : ‘
0 200 400 600 800 1000
Iterations

A few challenges revisited at scale




Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

Effect on
the convergence

Converged

Not Converged

10

,_.
o,
n

Relative Error

10" Acc

10

0 200 400 600 800 1000

Iterations

A few challenges revisited at scale



Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

Effect on
the convergence

Converged

Not Converged

10°

10

Relative Error

10" ACC

10

0 200 400 600 800 1000

Tterations

A few challenges revisited at scale




Detecting soft error in the Conjugate Gradient method
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Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

Effect on
the convergence
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Detecting soft error in the Conjugate Gradient method

Fault injection methodology in 64-bit

AT ANY BIT OF FLOATING POINT REPRESENTATION
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Detecting soft error in the Conjugate Gradient method

Fault injection methodology in 64-bit

AT ANY BIT OF FLOATING POINT REPRESENTATION

exponent fraction
sign (11 bit) (52 bit)
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Detecting soft error in the Conjugate Gradient method

Sensitivity to soft-errors in mat-vec
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Detecting soft error in the Conjugate Gradient method

Sensitivity to soft-errors in precond
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Detecting soft error in the Conjugate Gradient method
Main Observations

Sensitivity
o PCG algorithm is more sensitive for soft-errors on SpMV

@ Soft-errors have different propagation patterns which influence
the parameters of the algorithm in distinct ways
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Detecting soft error in the Conjugate Gradient method
Main Observations

Sensitivity
o PCG algorithm is more sensitive for soft-errors on SpMV

@ Soft-errors have different propagation patterns which influence
the parameters of the algorithm in distinct ways

What about soft-error detection based on rounding error analysis
[Vorst & Yee, SISC, 2000] a safe interval for oz parameter

()‘;ix <o < )‘;}n) [Hestenes & Steifel, :1 JNRBS, 1952] ?

l lrrzia N challenges revisited at scale 20 /23



Detecting soft error in the Conjugate Gradient method

Detection robustness v.s. Preco. bit-flip location
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Detecting soft error in the Conjugate Gradient method

Detection robustness v.s. SpMV bit-flip location
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Detecting soft error in the Conjugate Gradient method
Main Observations

Detection

@ Deviation is a good criterion candidate for SpMV faults but
not for preconditioner faults

@ Control frequency for deviation should be investigated

@ « criterion works well for preconditioner faults but not for
SpMV

@ An estimation of extremal eigenvalues of preconditioned
matrix is needed for « criterion (often known for scalable
preconditioners)

l lrrzia N challenges revisited at scale 23 /23
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Merci for your attention

Questions ?
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