
Forum Teratec 2017
June 28, 2017
Palaiseau, France

A few challenges revisited at scale
parallel performance v.s. attainable accuracy

robustness to soft errors

L. Giraud
joint work with

E. Agullo (Inria), S. Cools (Antwerpen Univ.),
W. Vanroose (Antwerpen Univ.), F. Yetkin (Istanbul

Kemerburgaz Univ.)

HiePACS - Inria Project

Inria Bordeaux Sud-Ouest

Forewords

HiePACS objectives: Contribute to the design of effective tools for
frontier simulations arising from challenging research and industrial

multi-scale applications towards extreme computing

Study and design of novel numerical algorithms for emerging
computing platforms
Analyse their possible weaknesses and possible remedies

A few challenges revisited at scale 2 / 23

Scientific context: numerical linear algebra
Goal: solving Ax = b, where A is sparse

Appears in many academic and industrial simulation codes for
various engineering applications: accelerator physics, chemical
process simulations, earth and environmental sciences, fluid flow,
fusion energy, structural analysis, structural biology, ...

Still promising solution techniques based on Krylov subspace
methods (Aleksei Nikolaevich Krylov, 1863-1945)

Oldest but still effective solver : the conjugate gradient
method (CG) [M .R. Hestenes and E. Stiefel, JNRBS, 1952]

A few challenges revisited at scale 3 / 23

1. Improving attainable accuracy

2. Detecting soft error in the Conjugate Gradient method

A few challenges revisited at scale 4 / 23

Improving attainable accuracy

Outline

1. Improving attainable accuracy

2. Detecting soft error in the Conjugate Gradient method

A few challenges revisited at scale 5 / 23

Improving attainable accuracy

Original algorithm at a glance

1: for i = 0, . . . do
2: si := Api
3: αi := rT

i ui/sT
i pi

4: xi+1 := xi + αipi
5: ri+1 := ri − αisi
6: ui+1 := M−1ri+1
7: βi+1 := rT

i+1ui+1/rT
i ui

8: pi+1 := ui+1 + βi+1pi
9: end for

A few challenges revisited at scale 6 / 23

Improving attainable accuracy

Original algorithm at a glance

1: for i = 0, . . . do
2: si := Api
3: αi := rT

i ui/sT
i pi

4: xi+1 := xi + αipi
5: ri+1 := ri − αisi
6: ui+1 := M−1ri+1
7: βi+1 := rT

i+1ui+1/rT
i ui

8: pi+1 := ui+1 + βi+1pi
9: end for

Parallel performance bottleneck: 2 separated synchronizing
scalar-products

A few challenges revisited at scale 6 / 23

Improving attainable accuracy

Original algorithm at a glance

1: for i = 0, . . . do
2: si := Api
3: αi := rT

i ui/sT
i pi

4: xi+1 := xi + αipi
5: ri+1 := ri − αisi
6: ui+1 := M−1ri+1
7: βi+1 := rT

i+1ui+1/rT
i ui

8: pi+1 := ui+1 + βi+1pi
9: end for

Parallel performance bottleneck: 2 separated synchronizing
scalar-products
Many variants have been designed to overcome this drawback,
one of the most recent and promising is pipelined CG
[P. Ghysels and W. Vanroose, ParCo, 2014]

A few challenges revisited at scale 6 / 23

Improving attainable accuracy

Pipelined CG - p-CG

1: for i = 0, . . . do
2: αi := rT

i ui βi := wT
i ui

3: mi := M−1wi vi := Ami
4: zi := vi + βizi−1 qi := mi + βiqi−1
5: si := wi + βisi−1 pi := ui + βipi−1
6: xi+1 := xi + αipi ri+1 := ri − αisi
7: ui+1 := ui − αiqi wi+1 := wi − αizi
8: end for

A single non-synchronizing double scalar-products
→ possible overlap of mat-vec and preconditioning with
non-blocking reduction

A few challenges revisited at scale 7 / 23

Improving attainable accuracy

Parallel performance: 1 Mdof 2D Poisson

In sequential extra computation makes p-CG (green curve)
slower
Quickly parallel p-CG outperforms regular parallel CG (blue
curve)

A few challenges revisited at scale 8 / 23

Improving attainable accuracy

Parallel performance: 1 Mdof 2D Poisson

In sequential extra computation makes p-CG (green curve)
slower
Quickly parallel p-CG outperforms regular parallel CG (blue
curve)

A few challenges revisited at scale 8 / 23

Improving attainable accuracy

Parallel performance: 1 Mdof 2D Poisson

In sequential extra computation makes p-CG (green curve)
slower
Quickly parallel p-CG outperforms regular parallel CG (blue
curve)
Teasing: purple curve

A few challenges revisited at scale 8 / 23

Improving attainable accuracy

Why shall we mind ?

Attainable accuracy of p-CG worse than classical CG
Known/expected behaviour for three-term recurrence variants
[M.H.Gutknecht, Z.Strakoš, SIMAX, 2000]

A few challenges revisited at scale 9 / 23

Improving attainable accuracy

Possible remedy

Develop a (tedious) rounding-error analysis based on known
results (see e.g. N. Higham, SIAM book, 2002]) to compute the
propagation of local rounding errors in pipelined CG

fl(a op b) = (a op b)(1 + ε), |ε| ≤ ψ

fi+1 = (b − Ax̄i+1)− r̄i+1
= b − A(x̄i + ᾱi p̄i + δx

i)− (r̄i − ᾱi s̄i + δr
i)

= fi − ᾱigi − Aδx
i − δr

i

Design a residual replacement strategy [H. van der Vorst, Q. Ye,
SISC, 2000]

‖fi‖ ≤
√
ψ‖r̄i‖ and ‖fi+1‖ >

√
ψ‖r̄i+1‖.

A few challenges revisited at scale 10 / 23

Improving attainable accuracy

Features of the new algorithm

At a negligible extra computational cost
Attainable accuracy is recovered

A few challenges revisited at scale 11 / 23

Improving attainable accuracy

Features of the new algorithm

At a negligible extra computational cost
Attainable accuracy is recovered
Parrallel performance not “much affected” (purple vs green)

A few challenges revisited at scale 11 / 23

Improving attainable accuracy

Not ended story

A few still open questions
Analysis of the convergenve delay
Relax some theoretical hypothesis that might not hold in
practice

A few challenges revisited at scale 12 / 23

Detecting soft error in the Conjugate Gradient method

Outline

1. Improving attainable accuracy

2. Detecting soft error in the Conjugate Gradient method

A few challenges revisited at scale 13 / 23

Detecting soft error in the Conjugate Gradient method

Why soft errors occur?

What is soft error?
Possible causes : voltage reduction, electricity fluctuations,
cosmic particle effects, etc...
Appears on: memories, registers, pipeline of the processor

Extreme scale platforms

A few challenges revisited at scale 14 / 23

Detecting soft error in the Conjugate Gradient method

Why soft errors occur?

What is soft error?
Possible causes : voltage reduction, electricity fluctuations,
cosmic particle effects, etc...
Appears on: memories, registers, pipeline of the processor

Extreme scale platforms

A few challenges revisited at scale 14 / 23

Detecting soft error in the Conjugate Gradient method

Why soft errors occur?

What is soft error?
Possible causes : voltage reduction, electricity fluctuations,
cosmic particle effects, etc...
Appears on: memories, registers, pipeline of the processor

Extreme scale platforms

A few challenges revisited at scale 14 / 23

Detecting soft error in the Conjugate Gradient method

How soft errors occur?

1: for i = 0, . . . do
2: s := Api

3: α := rT
i ui/sT pi

4: xi+1 := xi + αpi
5: ri+1 := ri − αs
6: ui+1 := M−1ri+1

7: β := rT
i+1ui+1/rT

i ui
8: pi+1 := ui+1 + βpi
9: end for

We consider transient soft
errors

in the most
computationally
expensive kernels
other “cheaper” kernels
could be protected by
redundancy

A few challenges revisited at scale 15 / 23

Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

A few challenges revisited at scale 16 / 23

Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

A few challenges revisited at scale 16 / 23

Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

A few challenges revisited at scale 16 / 23

Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

A few challenges revisited at scale 16 / 23

Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

A few challenges revisited at scale 16 / 23

Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

A few challenges revisited at scale 16 / 23

Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

A few challenges revisited at scale 16 / 23

Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

A few challenges revisited at scale 16 / 23

Detecting soft error in the Conjugate Gradient method

Protocol for sensitivity study

A few challenges revisited at scale 16 / 23

Detecting soft error in the Conjugate Gradient method

Fault injection methodology in 64-bit

A few challenges revisited at scale 17 / 23

Detecting soft error in the Conjugate Gradient method

Fault injection methodology in 64-bit

A few challenges revisited at scale 17 / 23

Detecting soft error in the Conjugate Gradient method

Sensitivity to soft-errors in mat-vec

Many soft-errors are
silent
Mainly early bit-flip
on high order bits are
critical when
computing si = Api

A few challenges revisited at scale 18 / 23

Detecting soft error in the Conjugate Gradient method

Sensitivity to soft-errors in precond

Even many more
soft-errors are silent
Mostly bit-flip in
sign/exponent are
critical when
computing
ui+1 := M−1ri+1

A few challenges revisited at scale 19 / 23

Detecting soft error in the Conjugate Gradient method

Main Observations

Sensitivity
PCG algorithm is more sensitive for soft-errors on SpMV
Soft-errors have different propagation patterns which influence
the parameters of the algorithm in distinct ways

A few challenges revisited at scale 20 / 23

Detecting soft error in the Conjugate Gradient method

Main Observations

Sensitivity
PCG algorithm is more sensitive for soft-errors on SpMV
Soft-errors have different propagation patterns which influence
the parameters of the algorithm in distinct ways

What about soft-error detection based on rounding error analysis
[Vorst & Yee, SISC, 2000] a safe interval for α parameter
(λ−1

max ≤ αi ≤ λ−1
min) [Hestenes & Steifel, :1 JNRBS, 1952] ?

A few challenges revisited at scale 20 / 23

Detecting soft error in the Conjugate Gradient method

Detection robustness v.s. Preco. bit-flip location

ICC JAC

0

25

50

75

100

0

25

50

75

100

H
IG

H
LO

W

Flipped Bit

R
at

io
 o

f U
nd

et
ec

te
d

C
as

es
 (%

)

A−scaling No−scaling

ALPHA DN

A few challenges revisited at scale 21 / 23

Detecting soft error in the Conjugate Gradient method

Detection robustness v.s. SpMV bit-flip location

ICC JAC

0

25

50

75

100

0

25

50

75

100

H
IG

H
LO

W

Flipped Bit

R
at

io
 o

f U
nd

et
ec

te
d

C
as

es
 (%

)

ALPHA CS DN

A−scaling No−scaling

A few challenges revisited at scale 22 / 23

Detecting soft error in the Conjugate Gradient method

Main Observations

Detection
Deviation is a good criterion candidate for SpMV faults but
not for preconditioner faults
Control frequency for deviation should be investigated
α criterion works well for preconditioner faults but not for
SpMV
An estimation of extremal eigenvalues of preconditioned
matrix is needed for α criterion (often known for scalable
preconditioners)

A few challenges revisited at scale 23 / 23

Acknowlegement for financial support:

French ANR: RESCUE project
European FP7 : Exa2CT project
G8 : ECS project

More information on
http://hiepacs.bordeaux.inria.fr/

Merci for your attention
Questions ?

Acknowlegement for financial support:

French ANR: RESCUE project
European FP7 : Exa2CT project
G8 : ECS project

More information on
http://hiepacs.bordeaux.inria.fr/

	Improving attainable accuracy
	Detecting soft error in the Conjugate Gradient method

