Forum Teratec 2017 June 28, 2017 Palaiseau, France

A FEW CHALLENGES REVISITED AT SCALE parallel performance v.s. attainable accuracy robustness to soft errors

L. Giraud

joint work with

E. Agullo (Inria), S. Cools (Antwerpen Univ.), W. Vanroose (Antwerpen Univ.), F. Yetkin (Istanbul Kemerburgaz Univ.)

HiePACS - Inria Project Inria Bordeaux Sud-Ouest HiePACS objectives: Contribute to the design of effective tools for frontier simulations arising from challenging research and industrial multi-scale applications towards extreme computing

- Study and design of novel numerical algorithms for emerging computing platforms
- Analyse their possible weaknesses and possible remedies

Scientific context: numerical linear algebra

Goal: solving Ax = b, where A is sparse

Appears in many academic and industrial simulation codes for various engineering applications: accelerator physics, chemical process simulations, earth and environmental sciences, fluid flow, fusion energy, structural analysis, structural biology, ...

- Still promising solution techniques based on Krylov subspace methods (Aleksei Nikolaevich Krylov, 1863-1945)
- Oldest but still effective solver : the conjugate gradient method (CG) [M .R. Hestenes and E. Stiefel, JNRBS, 1952]

1. Improving attainable accuracy

2. Detecting soft error in the Conjugate Gradient method

Innía

Outline

1. Improving attainable accuracy

2. Detecting soft error in the Conjugate Gradient method

Innia

Original algorithm at a glance

1: for
$$i = 0, ...$$
 do
2: $s_i := Ap_i$
3: $\alpha_i := r_i^T u_i / s_i^T p_i$
4: $x_{i+1} := x_i + \alpha_i p_i$
5: $r_{i+1} := r_i - \alpha_i s_i$
6: $u_{i+1} := M^{-1} r_{i+1}$
7: $\beta_{i+1} := r_{i+1}^T u_{i+1} / r_i^T u_i$
8: $p_{i+1} := u_{i+1} + \beta_{i+1} p_i$
9: end for

Inría

Original algorithm at a glance

1: **for**
$$i = 0, ...$$
 do
2: $s_i := Ap_i$
3: $\alpha_i := r_i^T u_i / s_i^T p_i$
4: $x_{i+1} := x_i + \alpha_i p_i$

$$5: \quad \mathbf{r}_{i+1} := \mathbf{r}_i - \alpha_i \mathbf{s}_i$$

6:
$$u_{i+1} := M^{-1}r_{i+1}$$

7:
$$\beta_{i+1} := r_{i+1}^T u_{i+1} / r_i^T u_i$$

8:
$$p_{i+1} := u_{i+1} + \beta_{i+1}p_i$$

9: end for

• Parallel performance bottleneck: 2 separated synchronizing scalar-products

Original algorithm at a glance

1: **for**
$$i = 0, ...$$
 do
2: $s_i := Ap_i$
3: $\alpha_i := r_i^T u_i / s_i^T p_i$
4: $x_{i+1} := x_i + \alpha_i p_i$
5: $r_{i+1} := r_i - \alpha_i s_i$
6: $u_{i+1} := M^{-1} r_{i+1}$
7: $\beta_{i+1} := r_{i+1}^T u_{i+1} / r_i^T u_i$
8: $p_{i+1} := u_{i+1} + \beta_{i+1} p_i$

- 9: end for
 - Parallel performance bottleneck: 2 separated synchronizing scalar-products

Ui

 Many variants have been designed to overcome this drawback. one of the most recent and promising is pipelined CG

[P. Ghysels and W. Vanroose, ParCo, 2014]

Pipelined CG - p-CG

1: for
$$i = 0, ...$$
 do
2: $\alpha_i := r_i^T u_i \quad \beta_i := w_i^T u_i$
3: $m_i := M^{-1} w_i \quad v_i := Am_i$
4: $z_i := v_i + \beta_i z_{i-1} \quad q_i := m_i + \beta_i q_{i-1}$
5: $s_i := w_i + \beta_i s_{i-1} \quad p_i := u_i + \beta_i p_{i-1}$
6: $x_{i+1} := x_i + \alpha_i p_i \quad r_{i+1} := r_i - \alpha_i s_i$
7: $u_{i+1} := u_i - \alpha_i q_i \quad w_{i+1} := w_i - \alpha_i z_i$
8: end for

A single non-synchronizing double scalar-products
 → possible overlap of mat-vec and preconditioning with
 non-blocking reduction

Improving attainable accuracy

Parallel performance: 1 Mdof 2D Poisson

- In sequential extra computation makes p-CG (green curve) slower
- Quickly parallel p-CG outperforms regular parallel CG (blue curve)

Parallel performance: 1 Mdof 2D Poisson

- In sequential extra computation makes p-CG (green curve) slower
- Quickly parallel p-CG outperforms regular parallel CG (blue curve)

Parallel performance: 1 Mdof 2D Poisson

- In sequential extra computation makes p-CG (green curve) slower
- Quickly parallel p-CG outperforms regular parallel CG (blue curve)
- Teasing: purple curve

Why shall we mind ?

- Attainable accuracy of p-CG worse than classical CG
- Known/expected behaviour for three-term recurrence variants [M.H.Gutknecht, Z.Strakoš, SIMAX, 2000]

Possible remedy

 Develop a (tedious) rounding-error analysis based on known results (see e.g. N. Higham, SIAM book, 2002]) to compute the propagation of local rounding errors in pipelined CG

$$\mathsf{fl}(a ext{ op } b) = (a ext{ op } b)(1 + \epsilon), \quad |\epsilon| \leq \psi$$

$$\begin{array}{rcl} f_{i+1} &=& (b - A\bar{x}_{i+1}) - \bar{r}_{i+1} \\ &=& b - A(\bar{x}_i + \bar{\alpha}_i \bar{p}_i + \delta^{\times}_i) - (\bar{r}_i - \bar{\alpha}_i \bar{s}_i + \delta^{r}_i) \\ &=& f_i - \bar{\alpha}_i g_i - A\delta^{\times}_i - \delta^{r}_i \end{array}$$

• Design a residual replacement strategy [H. van der Vorst, Q. Ye, SISC, 2000]

$$\|f_i\| \leq \sqrt{\psi} \|\overline{r}_i\|$$
 and $\|f_{i+1}\| > \sqrt{\psi} \|\overline{r}_{i+1}\|.$

Features of the new algorithm

At a negligible extra computational cost

• Attainable accuracy is recovered

Features of the new algorithm

At a negligible extra computational cost

- Attainable accuracy is recovered
- Parrallel performance not "much affected" (purple vs green)

Not ended story

A few still open questions

- Analysis of the convergenve delay
- Relax some theoretical hypothesis that might not hold in practice

Outline

1. Improving attainable accuracy

2. Detecting soft error in the Conjugate Gradient method

Innía

Why soft errors occur?

What is soft error?

- Possible causes : voltage reduction, electricity fluctuations, cosmic particle effects, etc...
- Appears on: memories, registers, pipeline of the processor

Extreme scale platforms

nnía

Why soft errors occur?

What is soft error?

- Possible causes : voltage reduction, electricity fluctuations, cosmic particle effects, etc...
- Appears on: memories, registers, pipeline of the processor

Extreme scale platforms

nnía

Why soft errors occur?

What is soft error?

- Possible causes : voltage reduction, electricity fluctuations, cosmic particle effects, etc...
- Appears on: memories, registers, pipeline of the processor

Extreme scale platforms Size of DEVICES POSSIBLE SOFT ERROR RATES POSSIBLE SOFT ERROR RATES POSSIBLE SOFT ERROR BODIENTS AREA SOFT ERROR RATES POSSIBLE SOFT ERROR

nnía

How soft errors occur?

1: for
$$i = 0, ...$$
 do
2: $s := Ap_i$
3: $\alpha := r_i^T u_i / s^T p_i$
4: $x_{i+1} := x_i + \alpha p_i$
5: $r_{i+1} := r_i - \alpha s$
6: $u_{i+1} := M^{-1} r_{i+1}$
7: $\beta := r_{i+1}^T u_{i+1} / r_i^T u_i$
8: $p_{i+1} := u_{i+1} + \beta p_i$
9: end for

We consider transient soft errors

- in the most computationally expensive kernels
- other "cheaper" kernels could be protected by redundancy

Innía

Protocol for sensitivity study

Inría

	Effect on the convergence
Converged	
Not Converged	

	Effect on the convergence
Converged	
Not Converged	

	Effect on the convergence
Converged	
Not Converged	

	Effect on the convergence
Converged	
Not Converged	

	Effect on the convergence
Converged	
Not Converged	

	Effect on the convergence
Converged	
Not Converged	

	Effect on the convergence
Converged	
Not Converged	

Fault injection methodology in 64-bit

Fault injection methodology in 64-bit

Sensitivity to soft-errors in mat-vec

Innia

Sensitivity to soft-errors in precond

Main Observations

Sensitivity

- PCG algorithm is more sensitive for soft-errors on SpMV
- Soft-errors have different propagation patterns which influence the parameters of the algorithm in distinct ways

mala

Main Observations

Sensitivity

- PCG algorithm is more sensitive for soft-errors on SpMV
- Soft-errors have different propagation patterns which influence the parameters of the algorithm in distinct ways

What about soft-error detection based on rounding error analysis [Vorst & Yee, SISC, 2000] a safe interval for α parameter $\left(\lambda_{\max}^{-1} \leq \alpha_i \leq \lambda_{\min}^{-1}\right)$ [Hestenes & Steifel, :1 JNRBS, 1952] ?

Detection robustness v.s. Preco. bit-flip location

Detection robustness v.s. SpMV bit-flip location

Main Observations

Detection

- Deviation is a good criterion candidate for SpMV faults but not for preconditioner faults
- Control frequency for deviation should be investigated
- α criterion works well for preconditioner faults but not for SpMV
- An estimation of extremal eigenvalues of preconditioned matrix is needed for α criterion (often known for scalable preconditioners)

nnia

Acknowlegement for financial support:

- French ANR: RESCUE project
- European FP7 : Exa2CT project
- G8 : ECS project

More information on http://hiepacs.bordeaux.inria.fr/

Merci for your attention Questions ?

Acknowlegement for financial support:

- French ANR: RESCUE project
- European FP7 : Exa2CT project
- G8 : ECS project

More information on http://hiepacs.bordeaux.inria.fr/