

The use of Physics Based **Predictive Analytics in Digital Twins**

Frode Halvorsen, PhD Vice President Technology www.edrmedeso.com

Outline

Business motivation

Enabling technology

• Customer cases

IoT Value Chain

Industrial IoT by EDRMedeso

Analytics Solutions

Analytics Solutions

The Digital Twin

Implementation

450 400 350	Scroll_Z	R72KCE - Wo	rkbench						1 01											
400 350	File View	Tools I	🔥 Scroll_ZR72KCE - Workbench + - 🗆 X																	
400 350	1 🖻 🔽	10013 9	Inits Exten	sions .	Jobs <u>H</u> elp															
350		C : Static S	tructural - Mee	hanical [[ANSYS Mechanic	cal Enterprise Prer	Post]								÷ _		×			
350	Impor	File Edit Vi	ew Units To	ols Hel	p 🛛 🖂 🚽	+ 🔰 🌮 Solve	 ?√ Show Erro 	ors 📩 🏨	🖄 🚸 🛋 🙆 •	- 🕑 Worksh	eet in									
	Toolbox	♀ /☆ **ţ² 戸 Show Vert	ices मि⊂Clos	E Vertices	0.61 (Auto Scal	le) → 🕅	· • • • • • • • • • • • • • • • • • • •	र्षे 🔍 🔍 🤇	2 😳 🕫 📓	🖴 🗞 🗖 Colors 🐼 A] - Annotation Prefere	nces 1_1	. <u>t.</u> <u>t.</u> <u>t.</u>	2			_			
	Desi	Edge Co																		
	Eige	Fatigue Too IoT Plot 🔍	C: Stat	ic Stri	uctural															
300	ige fige fige fige fige fige fige fige f	Jutline	Fypres	amag	e															
	📐 Expli	Filter: Nam	Time: 1	E	5 •						Total_dan	nage.csv -	Excel							<
250	C Fluic	⋵⊷√⋿	2016-0	Fi	ile Hon	ne Insei	rt Page	Layout	Formulas	Data	Review	View	♀ Tell me	what you wa	nt to do		Magnus Gusta	ifsson	A Share	
	C Fluic		1	_																
200	G Fluic		1	A1	-	r = 🛛 🗙	~	f _≭ No	de Number											٣
200	Marn 🐼 Hydr		O.		A	в	с	D	E	F	G	н	1	J	к	L	м	N	c	-
	📉 Hydi		<mark>—</mark> 0.	1	Node Nur X	(Location Y	Location	Z Locatior	n Damage ()											
150	IC Er		— O.	2	1	-61.234	107	-15	0.000216											
	🔟 Mag		— 0.	3	2	61.234	107	-15	0.000216											
	Mod 🎹		- 0.	4	14	- /9.218	79 219	-15	0.000216											
100	Mod MB Mod		- 0.	6	14	-110.94	61,234	-15	0.000210											
	Mod		0.	7	18	-107	-61.234	-15	0.000216											
50	Ranc E	etails of "Fa Materials	0 .	8	19	-110.94	-79.218	-15	0.000216											
50	Rigic -	Fatigue Sti Loading		9	30	-79.218	-110.94	-15	0.000216											
	🖬 Shap	Type History Dat		10	33	-61.234	-107	-15	0.000216											
0	🐷 Stati	Scale Fa		11	34	61.234	-107	-15	0.000216											
(- C+-+i	Display		12	35	110.94	-110.94	-15	0.000216											
		Analysis Ty		14	49	110.54	-61.234	-15	0.000216											
	🕜 Doubl	Mean Stres Stress Com		15	50	107	61.234	-15	0.000216											
		Bin Size Use Quick		16	51	110.94	79.218	-15	0.000216											
		Infinite Life		17	62	79.218	110.94	-15	0.000216											
		_		18	65	79.218	110.94	-8	0.000267											
				19	66	110.94	79.218	-8	0.000242											
				20	68	107	61.234	-8	0.000216											
				22	69	110.94	-79.218	-0	0.000218										_	
				23	70	79.218	-110.94	-8	0.000216											
				24	71	61.234	-107	-8	0.000216											
						Total da	amage	(
								<u> </u>					-	11						

Operational Output

Digital Prototypes

Traversing Physical Model Fidelity

capacity required for the more complex model.

ANSYS DYNAROM – Step 1

- 3 SVD modes only need to reconstruct the unsteady temperature field
- A temperature signal excitation is provided to cover the full temperature spectrum

• Verification of the Dynarom model created

Step 2 – Arbitrary temperature field

Temperature Field (°C)

9.00e+01 8.65e+01 8.30e+01 7.95e+01

7.60e+0 7.25e+0 6.90e+0 6.55e+0 6.20e+0

5.85e+01 5.50e+01 5.15e+01 4.80e+01

4.45e+01 4.10e+01 3.75e+01 3.40e+01 3.05e+01

2.70e+01 2.35e+01

Fluent

Dynarom

ANSYS Twin Builder:

Digital Prototype

Digital Twins

ANSYS Digital Twins in the Cloud

Welcome to your QRRNT dashboard.

The precharge pressure (or the level in the feed tank) is below its programmable alarm limit.

Mains voltage is too low at start. 06

Π4

07

ALARM DETAILS AND HANDLING

No GEN bus communication with a device connected to the CU392

Grundfos **SYSMON digital twins** - harness the power of IoT to optimize your life.

SPECTION OF DATA

Grundfos, a global leader in design and manufacturing of pumps and water systems, brings advanced simulation and prediction capabilities to real-time in collaboration with simulation-powerhouse ANSYS and elite channel partner EDRMedeso. Grundfos will use digital twins to better serve its customers through improved product quality and performance, enhanced development productivity, optimized maintenance and reduced overall costs and risks associated with unplanned downtime.

Main Takeaways

- The key technologies are ready; implementation can start tomorrow
- Commercial solutions available on the market
- Physics based analytics offers an accelerated process compared to most predictive analytics
- Established and proven methods can be applied in new areas
- Numerous use cases already implemented; first runners are running