Quantum computing with superconducting qubits – Towards useful applications

Stefan Filipp IBM Research – Zurich Switzerland

Forum Teratec 2018 – June 20, 2018 – Palaiseau, France

Why Quantum Computing? Why now?

1971

1958

Moore's Law is Born Intel 4004 2,300 transistors

2014

IBM P8 Processor $\sim 650 \text{ mm}^2$ 22 nm feature size, 16 cores > 4.2 Billion Transistors

Alternative (co-existing) architectures: next generation systems (3D/hybrid)

neuromorphic (cognitive)

quantum computing

Quantum Computing as a path to solve intractable problems

Many problems in business and science are too complex for classical computing systems

Chemistry

Learning

© 2018 International Business Machines Corporation – Stefan Filipp – sfi@zurich.ibm.com

Optimization

discrete quantum states (qubits)

1-qubit gates

2-qubit gates

The Quantum Advantage – Simulation of physical systems

How much **memory** is needed to store a quantum state? How much time does it take to calculate dynamics of a quantum system?

# qubits	quantum state	coefficients	# bytes	
1	a 0 angle + b 1 angle	$2^1 = 2$	16 Bytes	
2	a 00 angle + b 01 angle + c 10 angle + d 11 angle	$2^2 = 4$	32 Bytes	Na
8		$2^8 = 256$	2kB	Microse
16		$2^{16} = 65'536$	512 kB	Millisecon
32		∼4 billion	32 GB	Seco
64	• • •	~ information in internet	128 EB (134 million GB)	Years or
256	•••	~ # of atoms in universe		

© 2018 International Business Machines Corporation – Stefan Filipp – sfi@zurich.ibm.com

noseconds

conds on watch

ds on smartphone

nds on laptop

supercomputer

quantum

classical

Types of Quantum Computing

Quantum Annealing

Optimization Problems

- Machine learning
- Fault analysis
- **Resource optimization**
- etc...

Many 'noisy' qubits can be built; large problem class in optimization; amount of quantum speedup unclear

Approximate Q-Comp.

Simulation of Quantum Systems, **Optimization**

- Material discovery
- Quantum chemistry
- Optimization
- (logistics, time scheduling,...)
- Machine Learning

Hybrid quantum-classical approach; already 50-100 "good" physical qubits could provide quantum speedup.

- Algebraic algorithms

Proven quantum speedup; error correction requires significant qubit overhead.

Fault-tolerant Universal Q-Comp.

Execution of Arbitrary Quantum

(machine learning, cryptography,...) Combinatorial optimization Digital simulation of quantum systems

Surface Code: Error correction in a Quantum Computer

IBM: Superconducting Qubit Processor

Superconducting qubit

quantum information carrier

Microwave resonator:

- read-out of qubit states
- quantum bus
- noise

$E_{01} \approx 5 \text{ GHz} \approx 240 \text{ mK}$

IBM Q quantum computing systems

<section-header>

Room

Microwave electronics

Cosmic Microwave Background 2.7K

PCB with the qubit chip at 15 mK Protected from the environment by multiple shields

Refrigerator to cool qubits to 15 mK with a mixture of ³He and ⁴He

© 2018 International Business Machines Corporation – Stefan Filipp – sfi@zurich.ibm.com

Chip with superconducting qubits and resonators

IBM qubit processor architectures

IBM Q experience (publicly accessible)

16 Qubits (2017)

5 Qubits (2016)

IBM Q commercial

Latticed arrangement for scaling

© 2017 International Business Machines Corporation

IBM Quantum Experience

Public quantum computer (up to 16 qubits) and developer ecosystem

IBM QX Features

- Tutorial
- Simulation
- Graphical programming
- QASM language
- API & SDK
- Active user community

Since launch

igodol

ullet

igodot

- \bullet

Experience quantum computing here:

research.ibm.com/ibm-qx

> 80,000 users > 3,000,000 experiments > 60 research papers used by 1,500+ colleges and universities, 300 high schools, 300 private institutions

Backend: QS1_1 (20 Qubits) ACTIVE	AVAILABLE	TO HUBS, I	PARTNERS,	
$\begin{array}{c} 00 \\ \hline 1 \\ 1 \\$	Q6	Q7	Q8	Q9
Frequency (GHz)	4.89	4.50	4.80	5.05
	72 70	173 53	68 23	61.05
T2 (μs)	38.11	60.35	36.62	39.80
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	7.97	-	2.23	3.36
	17.20	15.55	15.30	18.1 <u>5</u>
(10^{-2})	CX6_1	CX7_1	CX8_4	сх9_3
	4.17	5.40	4.16	6.65
Date Calibration: 2018-01-11 15:08:57	CX6_2	CX7_2	CX8_9	CX9_4
	4.41	8.03	4.29	3.02
	CX6_5	CX7_6	CX8_12	CX9_8
	4.14	4.46	4.35	4.81
	CX6_7	CX7_12	CX8_13	CX9_14
	5.82	2.41	3.96	2.93
	CX6_10 5.81	CX7_13 4.36		
	CX6_11 7.75			

✓ Bac	kend: i	bmax5 ((16 (Dubits)	
-------	---------	---------	-------	---------	--

$\begin{array}{c} \hline \\ \hline $
--

Date Calibration: 2018-01-29 13:39:30 Fridge Temperature: 0.0134089 K

More	detai	e
	acture	

	16	Q7	Q8	Q9	Q10	Q11	Q12
Frequency (GHz) T1 (μs)	.31 3.00	5.25 29.90	5.12 58.10	5.16 58.10	5.04 52.30	5.11 38.40	4.95 52.70
Τ2 (μs)	э.30	24.40	100.10	110.90	86.70	13.20	74.30
Gate error (10^{-3}) Readout error (10^{-2})	43 02	2.78 4.46	1.45 3.51	1.15 6.01	1.82 6.73	2.96 6.09	1.13 11.95
MultiQubit gate error (10^{-2})	(6_5 45	CX7_10 4.84	CX8_7 4.96	CX9_8 3.18		CX11_10 3.83	CX12_5 4.68
	(6_7 .86			CX9_10 4.32			CX12_11 6.77

			<u> </u>	-		 _		-		_		100	-	100	
5. I		_	 	I A 1	_	 _	 		- N		I .	111		11	
4	- 1	_	 ~ .							_					×.

Q10	Q11	Q1:
4.99	5.06	4.86
84.10	55.20	85.8
15.60	37.48	46.1
0.63	1.01	0.76
8.15	14.35	9.70
CX10_5	CX11_5	CX12
10.77	1.86	3.65
CX10_6	CX11_6	CX12
2.23	3.97	1.38
CX10_11	CX11_10	CX12
1.55	1.16	3.20
CX10_15	CX11_12	CX12
1.47	2.07	3.74
	CX11_16 3.78	CX12 2.08
	CX11_17 1.51	CX12 2.43

AVAILABLE ON QISKIT ACTIVE

Quantum Volume: How powerful is "my" Quantum Computer

(qubit #) x (circuit depth) =>
$$\tilde{V}_{Q} = \min[N, d(N)]^{2} => V_{Q} = \max_{n < N} \left(\frac{1}{N} \right)$$

depth 1 circuit:

- Number of physical qubits N
- Connectivity between qubits
- Number of gates before errors mask result
- Available hardware gate set
- Number of operations that can be run in **parallel**

Measures the useful amount of quantum computing that can be done with a near-term device before errors mask the result.

 \min

$--- q_2$ $--- q_1$ $--- q_4$ $--- q_3$ $(2) - q_6$ $--- q_5$ $--- q_8$

— q₇ — q₉

Quantum Volume: How powerful is "my" Quantum Computer

Challenges ahead:

- In order to increase the quantum volume we need to improve **both** effective error rate and qubit number
- It is the scaling of the effective error rate \bullet that limits the usefulness of a quantum computer with superconducting qubits
- Need to improve **connectivity**, gate speed and coherence
- Requires better designs, materials and two qubit interactions

The Universal Quantum Computing System

Idea:

logical qubits expected soon

[Gambetta, Chow, Steffen, npj Quantum Information 3, 2 (2017)]

Approximate Quantum Computing

[Gambetta, Chow, Steffen, npj Quantum Information 3, 2 (2017)]

Steps towards Universal Quantum Computing

Demonstration of Quantum Advantage & Learning Demonstrate an advantage to using quantum computing for

real problems of interest. Create software layer, quantum algorithms and education tools.50-100 qubits

Commercialization of Approximate Quantum Computer

Have commercial impact with useful applications on a quantum computer which does not need full fault tolerance, potentially assisting conventional computers (hybrid quantum computer) 100-1000+ qubits

Universal Fault-Tolerant Quantum Computer

time / complexity

Run useful quantum algorithms with exponential speed up over their classical counterparts. Requires error correction. 1M-10M qubits

Variational Quantum Eigensolver (VQE): A hybrid quantum-classical (HPC) algorithm

Solve problems where the goal is to minimize the energy of a system, e.g. $E_{min} = \langle \psi(\theta_{min}) | H_e | \psi(\theta_{min}) \rangle$

Prepare a quantum state $|\psi(\theta)\rangle$ and compute its energy $E(\theta)$

Evaluate $E(\theta)$; use classical optimizer to choose new value of θ until E_{min} is found

Advantages:

Use short circuits which fit into our coherence time Improve on best classical estimates by using non-classical trial states

© 2018 International Business Machines Corporation – Stefan Filipp – sfi@zurich.ibm.com

Quantum chemistry

Solving interacting fermionic problems is at the core of most challenges in computational physics and high-performance computing:

$$H_e = -\sum_{i=1}^{N} \frac{1}{2} \nabla_i^2 - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_A}{r_{iA}} + \sum_{i=1,j,i>1} \frac{1}{r_{ij}}$$

What can quantum computers do? Map fermions (electrons) to qubits and compute

molecular structure

Sign problem: Monte-Carlo simulations of fermions are NP-hard [Troyer & Wiese, PRL 170201 (2015)]

© 2018 International Business Machines Corporation – Stefan Filipp – sfi@zurich.ibm.com

Groundstate-energy of simple molecules

A. Kandala, et al. arXiv:1805.04492 (2018)

Optimization

Traveling Salesman Problem:

- Visit all cities just once
- **Choose the shortest path**
- **Come back to starting point**

 $17 \times \dots \times 5 \times 4 \times 3 \times 2 \times 1 = 17! =$ 355'687'428'096'000 possible paths

can be encoded into a quantum physics problem: find the ground-state of a spin (Ising) system, which encodes the optimal path

$$H_{Ising} = \sum_{k=1}^{N} h_k \, \sigma_z^k + \sum_{k$$

18 selected cities in Switzerland

Optimization Problems & Applications

production planning

Oughturn Information Software Kit

Open Source: www.qiskit.org

Latest version **Pypi** V0.3.8

The Quantum Information Software Kit (QISKit for short) is a software development kit (SDK) for working with OpenQASM and the IBM Q experience (QX).

Road map

Learn

Use QISKit to create quantum computing programs, compile them, and execute them on one of several backends (online Real quantum processors, and simulators).

Documentation

Run a quantum program

from qiskit impor
qp = QuantumProg
<pre>qr = qp.create_qu</pre>
<pre>cr = qp.create_c</pre>
<pre>qc = qp.create_ci</pre>
qc.h(qr[0])
qc.cx(qr[0], qr[1
<pre>qc.measure(qr[0],</pre>
<pre>qc.measure(qr[1],</pre>
result = qp.execu

[python3] \$ pip install qiskit

```
rt QuantumProgram
ram()
uantum_register('qr',2)
lassical_register('cr',2)
ircuit('Bell',[qr],[cr])
1])
 cr[0])
 cr[1])
ute('Bell')print(result.get_counts('Bell')
```

From Quantum Experience to Quantum Programs

Experience

ď

IBM

Real Devices

Simulators

International Business Machines Corporation – Stefan Filipp – sfi@zurich.ibm.com

Laboratory

QISKit demos for quantum chemistry and optimization

📮 QISKit / **qiskit-tutorial**

38 • Watch •

🛨 Unstar

193 **Y** Fork 83

VQE algorithm: Application to quantum chemistry

The latest version of this notebook is available on https://github.com/QISKit/giskit-tutorial

For more information about how to use the IBM Q experience (QX), consult the tutorials, or check out the community

Contributors

Antonio Mezzacapo, Jay Gambetta

Introduction

One of the most compelling possibilities of quantum computation is the the simulation of other quantum systems simulation of quantum systems encompasses a wide range of tasks, including most significantly

1. Simulation of the time evolution of quantum systems.

2. Computation of ground state properties.

These applications are especially useful when considering systems of interacting fermions, such as molecules and correlated materials. The computation of ground state properties of fermionic systems is the starting point for mapping out t

VQE algorithm: application to optimization problems

The latest version of this notebook is available on https://github.com/QISKit/giskit-tutorial

For more information about how to use the IBM Q experience (QX), consult the tutorials, or check out the community

Contributors

Antonio Mezzacapo, Jay Gambetta, Kristan Temme, Ramis Movassagh

Introduction

Many problems in quantitative fields such as finance and engineering are optimization problems. Optimization problems core of complex decision-making and definition of strategies.

Optimization (or combinatorial optimization) means searching for an optimal solution in a finite or countably infinite set of solutions. Optimality is defined with respect to some criterion function, which is to be minimized or maximized. This is typi cost function or objective function

- Step by step Jupiter notebooks on how to run quantum chemistry and combinatorial problems using quantum computers
- Variational quantum eigensolver approach with short-depth trial wavefunctions
- Chemistry tutorial includes H2 and LiH molecules to be run on 2 and 4 qubits. Explicit run of one interatomic distance and full potential energy surface
- Toy optimization problems include Max-Cut and travelling salesman instances

QISkit ACQUA

End Users and Domain Experts:

- Seamlessly integrate
 Quantum capabilities in the
 existing workflow
- Enjoy Quantum performance and accuracy gains without having to know Quantum
- Easily get high quality results

[-1.70505133	5.08016856
6.13194571	4.12524575
-0.26812628	3.90229532
5.60418357	-3.50842279
-3.92937001	6.17154054
5.55945014	5.89555566
-4.83748112	-5.56210097
5.58561689	-5.99641163
1.65834199	-1.49309666
-2.47010646	0.4242964
0.39126571	0.46051075
4.28488151	-5.30498883]

-1.875 Hartree

© 2018 International Business Machines Corporation – Stefan Filipp – sfi@zu

Chemistry

Problem Specifications

• PSI4

• PyQuante

API

API

Simulator

Translators

Fermionic Hamiltonian generator Qubits Hamiltonian generator

Solver

Methods

Variational Quantum Eigensolver Phase Estimation Dynamics Grover

OpenQASM

QISKit

Optimizing Transpiler

OpenPulse API

Hardware

Grand Challenge: Quantum Computing

Goal:

Build computers based on quantum physics to solve problems that are otherwise intractable

Roadmap:

Small-scale (Demonstration of Quantum advantage)

- **Research level demonstrations**
- Verify chemistry and error correction principles
- Infrastructure & community building
- Demonstrate 'Quantum advantage'

- Develop "Hardware-efficient" apps
 - Chemical configurations
 - Optimization
 - Hybrid quantum-classical computers
- No full error correction available

Large-scale

- Factoring

(Fault-tolerant Universal QC)

Known and proven speed-up:

quantum molecular simulations Speed-up machine learning Enable secure cloud computing

10⁶ - 10⁷ qubits