

Hewlett Packard Enterprise

FACETS OF GREEN HPC: CARBON-NEUTRAL SITE OPERATIONS, ENERGY EFFICIENCY AND OVERALL SUSTAINABILITY

Utz-Uwe Haus HPE HPC/AI EMEA Research Lab

2020-06-14 Forum Teratec 2022, Paris

ENERGY EFFICIENCY

- Energy efficient computing
- green data centers
- carbon neutrality
- prioritizing **energy-to-solution** over time-to-solution
- If ~1.5 Exaflops (10¹⁸) costs ~30 MW
- How much does a Zettaflop (10²¹) cost?

LUMI DATACENTER IN KAJAANI

High end:

- Biggest European HPC system
- 10 partner countries
- #3 on June 22
 - Top500 HPL
 - Top500 HPCG
 - Green500

100% hydroelectric energy up to 200 MW

Very reliable power grid: Only one 2 min outage in 38 years

100% free cooling available, PUE 1.03

Waste heat reuse: effective energy price 35 €/MWh, negative CO₂ footprint: 13500 tons reduced every year

https://www.lumi-supercomputer.eu/

FEDERATED COMPUTING ENABLES GREENER IT Really?

Gaia-X and Dataspaces

- Current USPs:
 - Compute near data
 - Vendor agnostic cloud-like computing
 - Trusted computing
 - Composable services
- Green aspects
 - Choose compute resources by ecological criteria
 - Decentralize compute by geographic opportunities
 - Attest Green IT aspects

Worldwide Datacenter Power

• 200 TW (= 4x Switzerland)

Usage growth by category

• normalized to DC energy use

"How much CO₂ do we spend to compute a solution to stop global warming?"

GREENHPC IS NOT JUST ABOUT TCO

Design for sustainability

Minimize transport ... incl. for recycling

Grid-interactivity

Energy consumption

SUSTAINABILITY BEYOND ENERGY USAGE

Reduce, Reuse, Recycle

- Sustainability is becoming part of TCO calculation
 - Can become serious part of design space
- Extend hardware lifetime
 - By refurbishing
 - By smarter middleware that can handle degrading components
 - Heterogeneous compute architectures (may) help extend lifetimes of installations
- Use spare cycles
 - This is the original rationale of AWS
 - Edge-to-Cloud paradigm, HPE Greenlake

Key figures:

- 80% of environmental impact influened during design
- 30% of large DC servers are unused
- 73k tons of IT equipment recycled by HPE 2018-2020

Optimized Energy Network Operations

- Optimization models for short-term (operational), mid-term (planning), long-term (investment) models of multi-energy systems
- Evaluation of how to achieve stability when integration of renewables and power-to-gas happens : Value of Flexibilities

HOLISTIC DATACENTER & OPERATIONAL EFFICIENCY - 4 PILLAR FRAMEWORK

Torsten Wilde: Assessing the Energy Efficiency of High Performance Computing (HPC) Data Centers, Dissertation, Technical University Munich (TUM), 2018, http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180326-1399734-1-7

HOLISTIC DATACENTER & OPERATIONAL EFFICIENCY - 4 PILLAR FRAMEWORK

HOLISTIC DATACENTER & OPERATIONAL EFFICIENCY - 4 PILLAR FRAMEWORK

NODE HISTOGRAM POWER VARIABILITY SUPERMUC PHASE1 (INTEL SANDY BRIDGE-EP XEON E5-2680 8C) – ONE ISLAND (514 NODES)

Wilde T., Auweter A., Shoukourian H., Bode A. (2015) Taking Advantage of Node Power Variation in Homogenous HPC Systems to Save Energy. In: High Performance Computing. ISC High Performance 2015. Lecture Notes in Computer Science, vol 9137. Springer, Cham

RUNNING NAS PARALLEL BENCHMARKS WITH DIFFERENT POWER CAPS ON AMD EPYC 7702

ORNL SUMMIT AVERAGE POWER BEHAVIOR*

Average power consumption was between 5MW and 6MW with a constant small percentage of extremes that touches both the system idle (2.5MW) and peak (13MW) power consumption throughout the year."

*Woong Shin, Vladyslav Oles, Ahmad M. Karimi, J. Austin Ellis, Feiyi Wang, "Revealing Power, Energy and Thermal Dynamics of a 200PF Pre-Exascale Supercomputer", SC'21, best paper

DATA MOVEMENT MIDDLEWARES

Data movement is expensive

Energy cost of data movemen: pJ per 64-bit FP op

Leland et al, SAND2016-9583

Need data object abstraction

• Across applications, across memory tiers, across compute nodes

13

THANK YOU

uhaus@hpe.com

