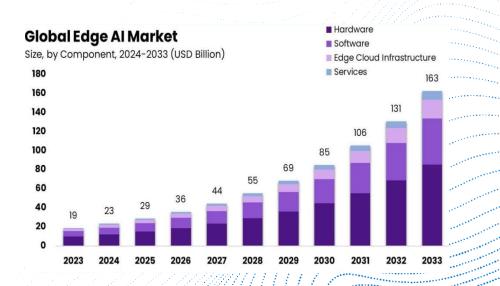
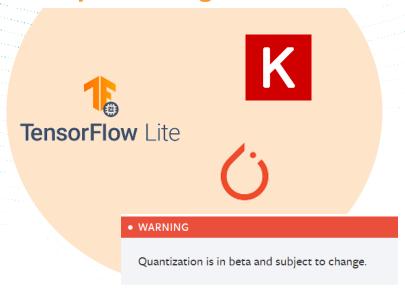

The first independent, open-source platform dedicated to embedded AI

Embedded AI: deep digitial transformation


OPPORTUNITY

- Real time
- Data and Model Security
- Cost reduction

NECESSITY

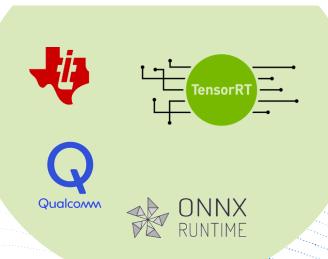

- Scaling up Al
- Economic Challenge
- Strategic challenge

[Market.us]

Existing tools: strong orientations

Deep Learning Plateforms

Close source / Maturity
Dependencies



Low level optimization Black box

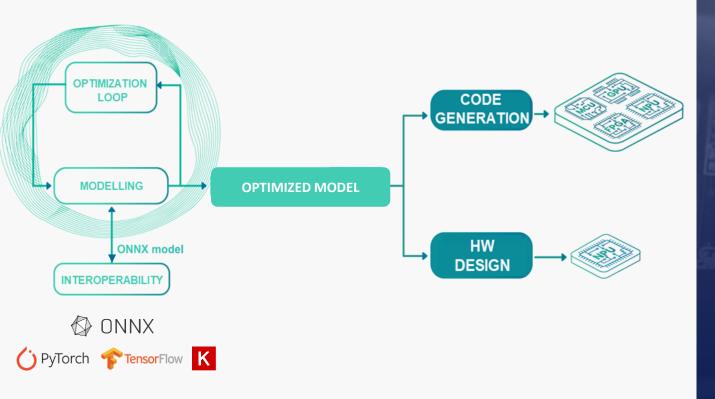
Hardware SDK

Close source
Hardware spectific

Challenges

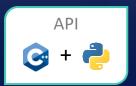
OPENESS

Reusable and adaptable tools to foster innovation

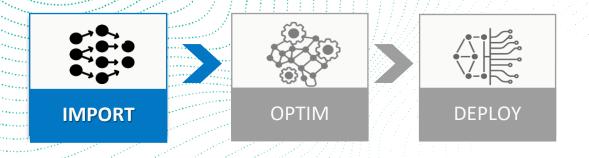


Complementary consortium

The first open, independent platform dedicated to embedded AI


Integrated platform

- From import to deployment
- High degree of interoperability
- Minimal dependencies



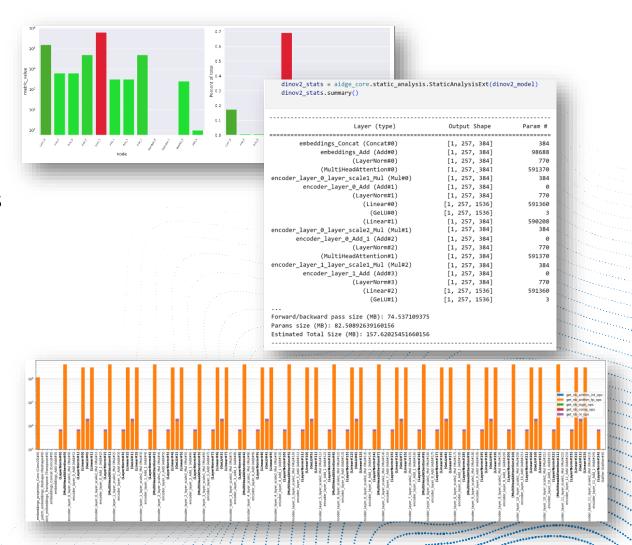
Modular and expandable platform

- Lightweight core module with plug-ins
- Open-source collaborative environment

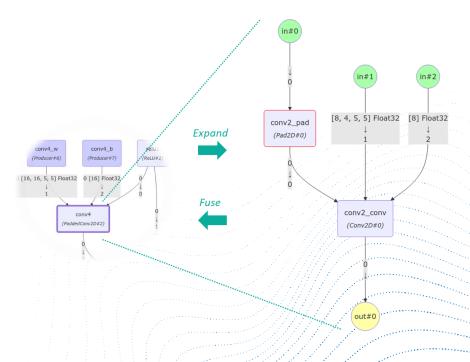
High degree of interoperability with ONNX standard

+60 operators and involved in the Safety ONNX standard

- Native support of the main embedded architectures
 CNN, RNN, GAN, YOLO, Transformer and soon SNN
- Rich analysis tools to assess model complexity: parameters, operations, etc.
- Unique intermediate representation for easy model access and manipulation

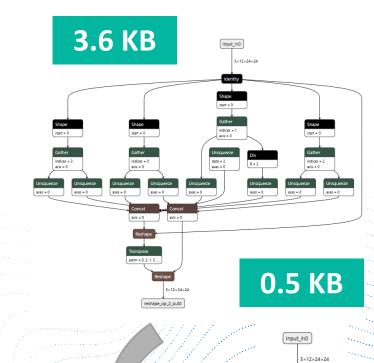

ONNX coverage ratio DINOv2 (Meta): 100%.


```
# Here show nb of operators!
   aidge onnx.native coverage report(dinov2 model)
Native operators: 824 (17 types)
- Add: 159
- Concat: 1
- Conv2D: 1
- Div: 49
- Erf: 12
- Gather: 1
- MatMul: 72
- Mul: 73
- Pow: 25
- Producer: 209
- ReduceMean: 50
- Reshape: 49
- Softmax: 12
- Split: 12
- Sgrt: 25
- Sub: 25
- Transpose: 49
Generic operators: 0 (0 types)
Native types coverage: 100.0% (17/17)
Native operators coverage: 100.0% (824/824)
```



- High degree of interoperability with ONNX standard
- Native support of the main embedded architectures
- Rich analysis tools to assess model complexity: parameters, operations, etc.
- Unique intermediate representation for easy model access and manipulation

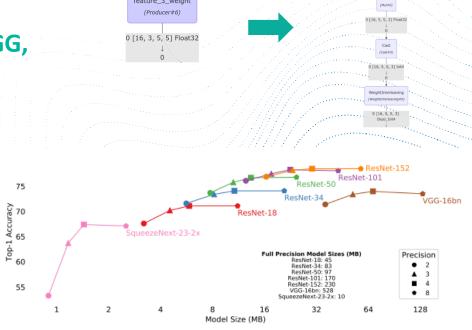
- High degree of interoperability with ONNX standard
- Native support of the main embedded architectures
- Rich analysis tools to assess model complexity: parameters, operations, etc.
- Unique intermediate representation for easy model access and manipulation

Match the granularity required by the implementation


A powerful graph matching system

aidge_core.fuse_to_metaops(dinov2_model,
 "ScaledDotProductAttention#1->Transpose->Reshape#1->Linear;"
 "Reshape#1<1~Producer;«
 "ScaledDotProductAttention#1<0-(Transpose<-Reshape#2<-Add#1);"
 "ScaledDotProductAttention#1<1-(Transpose<-Reshape#3<-Add#2);"
 "ScaledDotProductAttention#1<2-(Transpose<-Reshape#4<-Add#3);"</pre>

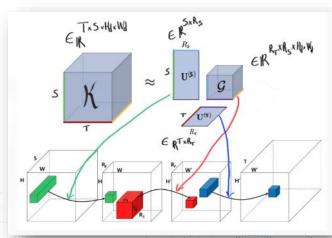
"Reshape#2<1~Producer;, "MultiHeadAttention")

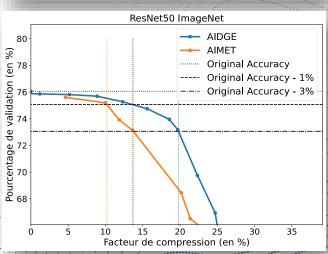

- Automatic model reduction: catalog of optimizations with deletion, reorganization and merging of operations
- State-of-the-art quantification to desired accuracy (ResNet, VGG, etc.)
 - After learning: without loss up to 8-bit integer
 - During learning: without loss up to 4-bit integer
- Tensor decomposition compression method
 - ResNet-50 x ImageNet: 15% compression without loss
 - ResNet-18 x CIFAR 100: 45% compression without loss

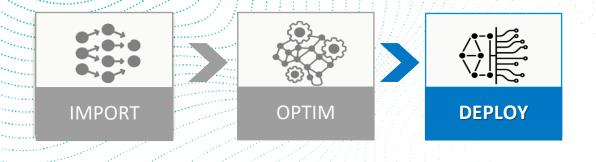
- Automatic model reduction: catalog of optimizations with deletion, reorganization and merging of operations
- State-of-the-art quantification to desired accuracy (ResNet, VGG, etc.)
 - After learning: without loss up to 8-bit integer
 - During learning: without loss up to 4-bit integer
- Tensor decomposition compression method
 - ResNet-50 x ImageNet: 15% compression without loss
 - ResNet-18 x CIFAR 100: 45% compression without loss

Traceability of optimization

for certification purposes


LEARNED STEP SIZE QUANTIZATION, Esser et al.

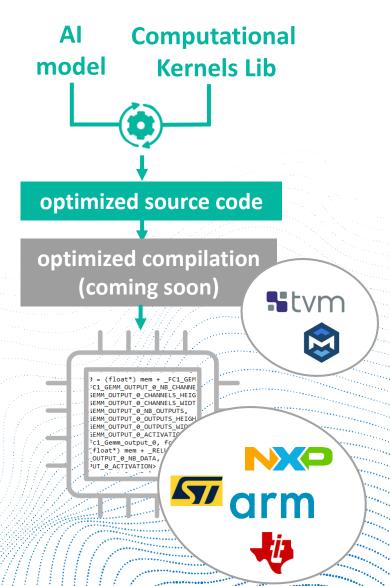




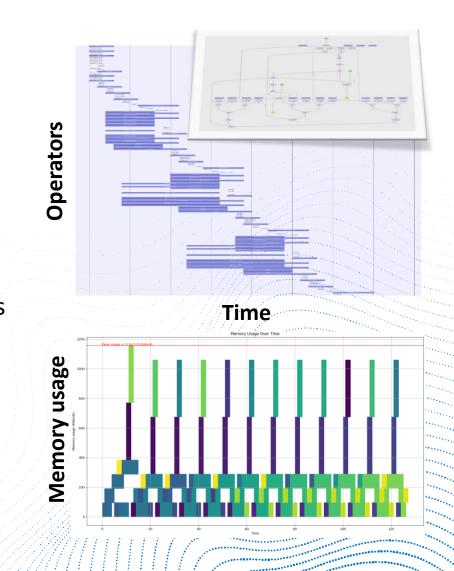
- Automatic model reduction: catalog of optimizations with deletion, reorganization and merging of operations
- State-of-the-art quantification to desired accuracy (ResNet, VGG, etc.)
 - After learning: without loss up to 8-bit integer
 - During learning: without loss up to 4-bit integer
- Tensor decomposition compression method
 - ResNet-50 x ImageNet: 15% compression without loss
 - ResNet-18 x CIFAR 100: 45% compression without loss

Higher performance than AIMET (Qualcomm)

- ONNX export for interfacing with numerous SDKs
- Transparent, multi-paradigm code generation engine (C/C++, HDL, etc.), enabling integration of compute kernels (native or third-party)
- Multi-target reference export (C++) and specializations (ARM, Texas Instrument SoC and ESP32 coming soon)
- Orchestration control and memory optimization through statistical allocation



Qualcomm


- ONNX export for interfacing with numerous SDKs
- Transparent, multi-paradigm code generation engine (C/C++, HDL, etc.), enabling integration of compute kernels (native or third-party)
- Multi-target reference export (C++) and specializations (ARM, Texas Instrument SoC and ESP32 coming soon)
 Coming soon :
 - Certification-aware export in C (ONERA)
 - Compilation workflow (INRIA)
- Orchestration control and memory optimization through statistical allocation

- ONNX export for interfacing with numerous SDKs
- Transparent, multi-paradigm code generation engine (C/C++, HDL, etc.), enabling integration of compute kernels (native or third-party)
- Multi-target reference export (C++) and specializations (ARM, Texas Instrument SoC and ESP32 coming soon)
- Orchestration control and memory optimization through statistical allocation

Active developments and collaborations

20cent fabricea wboussella diegob alalloyer
ikucher jeromeh marwaabd macario yberkat
bhalimi gkubler raphaelmillet ^{louislerbourg} vbaudelet flebert
obichler pineapple Irakotoarivony sylvainbataille mszczep farnez

oantoni jsimatic nvrlosemyself idealbuquerque clementgf julienl nthm bobot alemesle thibaultallenet jgirardsatabin lucaslopez vlorrain axelfarr cguillon silvanosky hleborgne operrin mick94 na25 Isoulier cmoineau noamzerah alicebatte hrouis

Norms

+30 industrials partners

•••

Some use cases

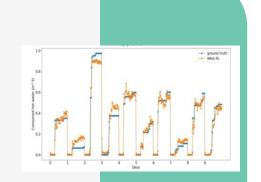
aidge

Defect detection and classification

- Low latency (20m/s) and high performance algorithm to detect small defect (~mm) with low contrast
- Deployment on Nvidia GPU
- In collaboration with

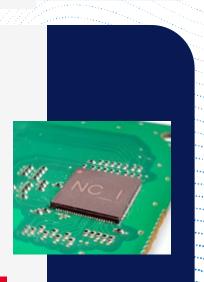
Indoor localisation using multisensors

- **Lightweight prediction** algorithm based on IMU sensors combined with fast AI Visual tracking (x15 faster)
- Deployment on STM32
- In collaboration with Sept sysnav



Heat Pump Monitoring

- Lightweight prediction algorithm based on incremental learning for adaptive heat pump control and monitoring
- Deployment on STM32
- Up to 40% energy saving
- In collaboration with **epp**



Hardware design: NeuroCorgi AI-ASIC accelerator

- RTL generation of quantized model
- HD images processing in real time: latency is less than 10ms
- Uses 1,000 times less power than commercial circuits

Follow us

Join us and chat!

