

Pannel of contributors

Chaired by Jean-Philippe Nominé, HPC Strategic Collaborations Manager, CEA With the participation of :

- Anthony Leverrier, Research, Inria
- Frédéric Magniez, Directeur de recherche, Laboratoire IRIF CNRS
- Boris Bourdoncle, secrétaire général du rapport, Quandela
- Mamdouh Abbara, Client Engagement Specialist, Alice & Bob
- Cyril Allouche, Head of Quantum Computing R&D, Head of Disruptive Innovation, Eviden

Frédéric Magniez
Research Director
CNRS, Université Paris Cité

Forum **TERATEC**

- Quantum computers are 40+ years old in theory
- Quantum computers won't replace supercomputers
 - they'll complement them
- Quantum algorithms have already revolutionized science
 - and could soon transform industry

Anthony Leverrier Researcher INRIA

- Solutions for quantum error correction and fault tolerance have been proposed almost 30 years ago.
- The first convincing experimental demonstrations are now finally taking place in the labs!
- The challenge ahead of us is to find better and more economical schemes that will speed up the development of useful quantum computers.

Mamdouh Abbara Client Engagement Specialist Alice&Bob

 Alice & Bob develops "cat qubits", a technology with inherent error-correction

 This reduces by up to two orders of magnitude the size required for a fault-tolerant quantum computer

Boris Bourdoncle

General secretary of the Academy Report Head of Scalable architecture research at Quandela

- Few groups are exploring the applications of fault-tolerant quantum computing, in particular in terms of resource estimation and optimisation
- We need to develop the systems engineering behind building faulttolerant quantum computers
- Scaling will require interconnecting modules, which calls for both experimental and theoretical advances

Cyril Allouche

Head of Quantum Computing R&D

Head of Disruptive Innovation,

Eviden

- FTQC is the first step toward LSQ « Large Scale Quantum Computing »
- LSQ implies convergence with HPC standards of heterogeneous computing