Optimization tools and applications developed during the OMD & OMD2 projects

Denis Caromel (Univ. Nice and INRIA)

Régis Duvigneau (INRIA)

Rodolphe Le Riche (CNRS and Ecole des Mines St-Etienne)

General context

OMD = Optimisation MultiDisciplinaire (French) = MDO (English). OMD2 = a continuation of OMD + Distributed.

- Numerical simulation has reached a high level of maturity and is increasingly turning to optimization.
- The encountered bottlenecks (see later) are not the ones mathematicians would spontaneously consider.

optimize a complex object

versus

Context: uncertainties & multidiscipline

f(x) is in fact f(y(x, U)) where y is the output of the multidisciplinary simulation

U are uncertain parameters

f(y(x, U)) is calculated through a complex workflow

Context: computational time & multi-fidelity

Many simulations are possible to describe the same object:

engineering model

statistical model (or metamodel)

discretized PDEs

They represent various compromises between simulation fidelity and computational cost.

The OMD and OMD2 projects aim at solving realistic, simulation based OPTIMIZATION problems

Outline of the talk

Optimization with uncertainties (1)

f(x) is noisy $\rightarrow f(x,U)$, where U is random. U used to represent uncertain environnement, model error, noise.

How to « optimize » x? What does it mean?

Optimization with uncertainties (2): when noise cannot be controlled

Problem: $min_x f(x)$ but evaluations of f(x) are perturbed as f(x,u), where u is not controlled.

Method: a stochastic optimization algorithm which strikes a good compromise between efficiency and robustness, **CMA-ES** with mirrored sampling and sequential selection. (CMA-ES available in Scilab)

D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold, and T. Hohm. *Mirrored Sampling and Sequential Selection for Evolution Strategies*, PPSN XI, Springer, 2010

A. Auger, D. Brockhoff, N. Hansen, *Analysing the impact of mirrored sampling and sequential selection in elitist Evolution Strategies*, FOGA 2011.

Optimization with uncertainties (3): when noise can be controlled

The optimization of a statistical measure of the performance is costly

Problem: $min_x E_U f(x,U)$, U normal and calls to f(x,u) are controlled, f calls expensive.

Method: approximate $E_U f(x,u)$ by a kriging process used to simultaneously sample U and optimize x. No double loop.

Scilab implementation.

J. Janusevskis and R. Le Riche, Simultaneous kriging-based sampling for optimization and uncertainty propagation, ROADEF 2011 and report hal-00506957 2010.

Optimization with uncertainties (4): when noise can be controlled

Problem: $min_x E_U f(x,U)$ and / or $min_x VAR_U f(x,U)$

Method 1: The gradients and Hessian of f w.r.t. u are known (adjoint method, automatic differenciation) \rightarrow **method of moments**, $E_U f(x,U)$, $VAR_U f(x,U)$ can be estimated from $grad_U f$, $Hess_U f$, E(U) and VAR(U).

Method 2: Only f evaluations known → Monte Carlo and metamodels (radial basis functions, kriging). Scilab implementation.

- R. Duvigneau et al., *Uncertainty Quantification for Robust Design*, Multidisciplinary Design Optimization in Computational Mechanics, Wiley, 2010.
- G. Pujol et al., *L'incertitude en conception*, Optimisation multidisciplinaire en mécanique, Hermes, 2009.

application to f = drag, Duvigneau et al. 2010.

Optimization with uncertainties (5): adjustable fidelity

Adjustable fidelity = the noise of the simulations can be reduced at an increased computational cost, e.g., $t^2 \sim 1 / time$ (Monte Carlo).

Expected quantile improvement: a measure of potential improvement at unknown points accounting for the risk associated to noisy observations (based on kriging).

V. Picheny et al., *Optimization of noisy computer experiments with tunable precision*, Technometrics, 2011.

Fidelity accounted for in the optimization algorithm: Scilab implementation.

D. Salazar et al., An empirical study of the use of confidence levels in RBDO with Monte Carlo simulations, Multidisciplinary Design Optimization in Computational Mechanics, Wiley, 2010.

Outline of the talk

Multilevel Algorithms: Motivations

Simulation-based optimization in industrial context is limited by the CPU time required, originating from :

- Complex physical systems
- Presence of several local minima
- Anisotropy of objective functions
- Large number of design parameters

- expensive simulations
- → large number of simulations
- → slow convergence
- slow convergence

To address these issues, hierarchical approaches are proposed:

- Multilevel modelling
- Multi-fidelity simulation
- Multilevel parameterization

Multilevel Modelling: Principles

Physical systems can be represented by models of various accuracy levels:

Multilevel modelling optimization: use as much as possible lowlevel modelling, but reach high efficiency for high-level modelling

Example: POD

Proper Orthogonal Decomposition (POD) consists of constructing a reduced-order model based on a small number of eigenmodes using some high-level modelling simulations

Ex: Admission duct design Reconstruction error 0.08 2.06 0.04 0.02 10 20 30 40 Number of modes [Univ. Tech. Compiègne, Ec. Centrale Paris]

Example: Metamodels

Replace some expensive simulations by a mathematical model that interpolates data previously computed

Two examples of strategy:

- Use metamodels only to select promising simulations that will be carried out with highlevel modelling (inexact pre-evaluation method)
- Use metamodels to completely drive the search by determining designs with highest probability of improvement (EGO method)

Multi-fidelity simulation: Principle

Reduce the computational cost by degrading the numerical accuracy of the simulations used during the optimization :

- Use coarser grids
- Use incomplete convergence
- Use low-order discretization schemes

Optimization algorithms have to take into account the errors!

Ex : construction of metamodels taking into account confidence intervals

Multilevel parameterization: Principle

Accelerate the convergence (anisotropy and multimodality) by conducting the search in nested design spaces

- Construct some parameterization levels (coarse level with small number of parameters to fine level with large number of parameters)
- Define hierarchical optimization strategy

Ex: aerodynamic design with three levels and hybridization

Outline of the talk

Distributed optimization: middleware, workflows and integration with Scilab

Workflow analysis: for complex applications, evolve over time, distributed environnement, resilient. (INRIA Opale)
T. Nguyên, et al. A Distributed Workflow Platform for Simulation, Intl.
Journal on Advances in Intelligent Computing Systems, 2011.

Distribution on heterogeneous infrastructures, workflow visualization (Activeon)

Interface with the Scilab opensource scientific calculation plateform.

Proactive Parallel Suite

Workflow Execution
Studio Editor and Visualization
Parallel Programming in Java

Portal, Multi-Application & Multi-Tenant Enterprise Orchestration

Physical and Virtual Machines Management

Integration with Scilab and Matlab

Integration with Scilab and Matlab

Interface ProActive Scilab

The ProActive PACA Grid Platform (4)

Use Cases and Demonstration on a Production Platform

Total:

- □1 368 Cores
- □480 CUDA Cores
- **□30TB Storage**
- **Publically Available Today**

Workflow Studio

ProActive Orchestration Portal

Graphical Visualization of Workflow Execution

Heterogeneous Resource Management

Sustained Load of 99 % over Long Periods

ProActive OMD2 Demo

1000 Cores Production Cloud Portal

Remote Visualization Directly from Portal

Engineering Optimizations: Renault UC

End Of Demonstration

Optimization algorithms for distributed computing infrastructures

CMA-ES (Covariance Matrix Adaptation Evolution Strategy): a state-of-the-art stochatic optimizer. λ calls to f are distributed on λ computing nodes at each iteration. What is the best parents population size? (INRIA / TAO)

- \rightarrow Default choice of CMA: $\mu = \lambda/2$ not optimal
- $\rightarrow \mu = min(d, \lambda/4)$ close from optimal , $ln(\mu) \approx ln^2(ln(\lambda))$
- \rightarrow Optimal convergence rate prop to $log(\lambda)$

M. Jebalia, A. Auger, Log-linear convergence of the scale-invariant (μ/μ_w , λ)-ES and optimal m for intermediate recombination and large population sizes, PPSN XI, 2010.

Distributed optimization based on kriging: use a kriging metamodel to summarize past and currently running simulations, decide new simulations based on multi-points expected improvements

D. Ginsbourger, et al., *Dealing with asynchronicity in kriging-based parallel global optimization*, WCGO-2011.

The OMD and OMD2 projects aim at solving realistic, simulation based OPTIMIZATION problems

