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General context 

OMD = Optimisation MultiDisciplinaire (French) = MDO (English). 

OMD2 = a continuation of OMD + Distributed. 

 

● Numerical simulation has reached a high level of maturity and is 

increasingly turning to optimization. 

● The encountered bottlenecks (see later) are not the ones 

mathematicians would spontaneously consider. 
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Context : uncertainties & multidiscipline 

𝑓 𝑥  is in fact  𝑓 𝑦 𝑥, 𝑈   where

𝑦  is the output of the multidisciplinary simulation
 

𝑈  are uncertain parameters

𝑓 𝑦 𝑥, 𝑈   is calculated through a complex workflow
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Context : computational time & multi-fidelity 

Many simulations are possible to describe the same object : 

engineering model 

statistical model 
(or metamodel) 

discretized PDEs 

They represent various compromises between simulation fidelity and 

computational cost. 
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Optimization with uncertainties (1) 

f(x) is noisy → f(x,U) ,  where U  is random. 
U used to represent uncertain environnement, model error, noise. 

 
How to « optimize » x ? 

What does it mean ? 



Optimization with uncertainties (2) :  
when noise cannot be controlled 

Problem :   min
x
 f(x)   but evaluations of f(x) are perturbed as  f(x,u), 

where u is not controlled. 
 
Method : a stochastic optimization algorithm which strikes a good 
compromise between efficiency and robustness, CMA-ES with mirrored 
sampling and sequential selection. (CMA-ES available in Scilab) 

 
D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold, and 
T. Hohm. Mirrored Sampling and Sequential Selection for 
Evolution Strategies, PPSN XI, Springer, 2010 

A. Auger, D. Brockhoff, N. Hansen, Analysing the impact 
of mirrored sampling and sequential selection in elitist 
Evolution Strategies,  FOGA 2011. 



Optimization with uncertainties (3) :  
when noise can be controlled 

Problem :   min
x
 E

U
 f(x,U)  , U normal and calls to  f(x,u) are controlled, f 

calls expensive. 
Method : approximate E

U 
f(x,u) by a kriging process used to simultaneously 

sample U and optimize x. No double loop. 
Scilab implementation. 

 

The optimization of a statistical measure of the performance is costly 

Optimization : loop on x 

Estimation of the performance (average, 
std dev, percentile of f(x,U)  ) : loop on u , 
Monte Carlo 

J. Janusevskis and R. Le Riche, Simultaneous 
kriging-based sampling for optimization and 
uncertainty propagation,  ROADEF 2011 and 
report hal-00506957  2010. 

x u 

f 



Optimization with uncertainties (4) :  
when noise can be controlled 

Problem :   min
x
 E

U  
f(x,U)    and / or    min

x
 VAR

U 
f(x,U) 

  
Method 1 : The gradients and Hessian of  f   w.r.t.  u are known (adjoint 
method, automatic differenciation)  →  method of moments,  E

U 
f(x,U)  ,  

VAR
U 

f(x,U)  can be estimated from grad
U 

f , Hess
U 

f ,  E(U) and  VAR(U)  .   

Method 2 : Only f evaluations known → Monte Carlo and metamodels 
(radial basis functions, kriging). Scilab implementation. 

● R. Duvigneau et al., Uncertainty 
Quantification for Robust Design, 
Multidisciplinary Design Optimization 
in Computational Mechanics, Wiley, 
2010. 
 

● G. Pujol et al., L’incertitude en 
conception , Optimisation 
multidisciplinaire en mécanique, 
Hermes, 2009. 

application to f = drag , Duvigneau et al. 2010. 



Optimization with uncertainties (5) : 

adjustable fidelity 

Adjustable fidelity = the noise of the simulations can be reduced at an increased 

computational cost, e.g., t2 ~ 1 / time (Monte Carlo). 

Expected quantile improvement : a 

measure of potential improvement at 

unknown points accounting for the risk 

associated to noisy observations (based on 

kriging). 

V. Picheny et al., Optimization of noisy 

computer experiments with tunable 

precision, Technometrics, 2011. 

Expl. of DoE with expected quantile improvement and 

tuned accuracy. 

D. Salazar et al., An empirical study of the use of confidence levels in RBDO with Monte Carlo 

simulations, Multidisciplinary Design Optimization in Computational Mechanics, Wiley, 2010. 

Fidelity accounted for in the optimization algorithm : Scilab implementation. 
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Simulation-based optimization in industrial context is limited by the CPU 

time required, originating from : 

 

 Complex physical systems     expensive simulations 

 Presence of several local minima   large number of simulations 

 Anisotropy of objective functions    slow convergence 

 Large number of design parameters   slow convergence 

 

 

To address these issues, hierarchical approaches are proposed : 

 

 Multilevel modelling 

 Multi-fidelity simulation 

 Multilevel parameterization 

 

Multilevel Algorithms : Motivations 



Physical systems can be represented by models of various 

accuracy levels: 

 

 

 

 

Multilevel Modelling : Principles 

Non-linear PDEs  

(ex:Navier-Stokes) 

 

Linear PDEs  

(ex: Laplace) 

 

Reduced-order models  

(ex: POD) 

 

Metamodels  

(Polynomial fitting, 

Kriging) 

Some hours on a cluster 

 

 

Some minutes on 

workstations 

 

Some seconds on 

workstations 

 

Less than one second 

 

Multilevel modelling optimization : use as much as possible low-

level modelling, but reach high efficiency for high-level modelling 
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Proper Orthogonal Decomposition (POD) consists of constructing 

a reduced-order model  based on a small number of eigenmodes 

using some high-level modelling simulations 

 

 

 

 

Example : POD 
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Ex : Admission duct design 

 

 

 

[Univ. Tech. Compiègne, Ec. Centrale Paris] 



Replace some expensive simulations by a mathematical model that 

interpolates data previously computed 

 
Two examples of strategy: 

 Use metamodels only to select promising simulations that will be carried out with high-

level modelling (inexact pre-evaluation method) 

 Use metamodels to completely drive the search by determining designs with highest 

probability of improvement (EGO method) 

 

 

 

 

 

 

 

Example : Metamodels 

Ex 1 : aerodynamic 

wing design 

 

 

 

[INRIA Opale, LMT Cachan] 

Ex 2 : structural design 

 

 

 



Reduce the computational cost by degrading the numerical accuracy 

of the simulations used during the optimization : 

 

 Use coarser grids 

 Use incomplete convergence 

 Use low-order discretization schemes 

 

Optimization algorithms have to take into account the errors !  

 

 

 

 

 

 

Multi-fidelity simulation : Principle 

Ex : construction of metamodels taking 

into account confidence intervals 

 

 

[Ec. Centrale Paris] 



Accelerate the convergence (anisotropy and multimodality) by 

conducting the search in nested design spaces 

 

 Construct some parameterization levels (coarse level with small number of 

parameters to fine level with large number of parameters) 

 Define hierarchical optimization strategy 

 

 

 

 

 

 

Multilevel parameterization : Principle 

Ex : aerodynamic design with three levels and hybridization  

 

 

[INRIA Opale] 
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Distributed optimization : middleware, 

workflows and integration with Scilab 

Workflow analysis : for complex applications, evolve over 
time, distributed environnement, resilient.  (INRIA Opale) 
T. Nguyên, et al. A Distributed Workflow Platform for Simulation, Intl. 
Journal on Advances in Intelligent Computing Systems,  2011. 

 
Distribution on heterogeneous infrastructures, 
workflow visualization (Activeon) 
 
Interface with the Scilab opensource scientific calculation 
plateform. 
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Physical and Virtual Machines Management 

Portal, Multi-Application & Multi-Tenant 
Enterprise Orchestration 

Workflow Execution 
Studio Editor and Visualization 

Parallel Programming in Java 
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   Integration with 

 

Scilab and Matlab 
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Integration with Scilab and Matlab 

Dedicated resources 

LSF 

Static Policy 

Amazon EC2 

EC2 

Dynamic Workload 
Policy 

Desktops 

Desktops 

Timing Policy 
12/24 
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Interface ProActive  Scilab 



Demonstration 
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The ProActive PACA Grid Platform (4) 

Use Cases and Demonstration 

on a Production Platform 

 

Total:  

1 368 Cores  

480 CUDA Cores 

30TB Storage  

Publically Available Today 
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Workflow Studio 
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ProActive Orchestration Portal 
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Graphical Visualization of Workflow Execution 
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Heterogeneous Resource Management 
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Sustained Load of 99 % over Long Periods 
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ProActive OMD2 Demo 

1000 Cores  

Production  

Cloud Portal  
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Remote Visualization Directly from Portal 
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Engineering Optimizations: Renault UC 

34 
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End Of 

Demonstration 
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Optimization algorithms for distributed 
computing infrastructures 

CMA-ES (Covariance Matrix Adaptation Evolution Strategy) : 

a state-of-the-art stochatic optimizer. l calls to f are distributed on l computing 
nodes at each iteration. What is the best parents population size ? (INRIA / TAO) 

M. Jebalia, A. Auger, Log-linear convergence of the scale-invariant (m/mw, l)-ES 
and optimal m for intermediate recombination and large population sizes, PPSN 
XI, 2010. 

→ Default choice of CMA: μ=λ/2 not optimal 
→ μ=min(d,λ/4) close from optimal ,  ln(μ)  ≈ ln2(ln(λ)) 
→ Optimal convergence rate prop to log(λ) 

D. Ginsbourger, et al., Dealing with asynchronicity in kriging-based parallel 
global optimization, WCGO-2011. 

Distributed optimization based on kriging : use a kriging metamodel to 

summarize past and currently running simulations, decide new simulations 

based on multi-points expected improvements 
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