
Simplified stress analysis 

of bonded joints using the 

macro-element technique

Eric Paroissien, eric.paroissien@sogeti.com, +33(0)5.34.46.92.64

FORUM TERATEC 2015

23 June 2015, Ecole Polytechnique, France

Presented by: E. PAROISSIEN SOGETI HIGH TECH, Toulouse (FR)

Co-Authors: A. DA VEIGA SOGETI HIGH TECH, Toulouse (FR)

S. SCHWARTZ SOGETI HIGH TECH, Toulouse (FR)

G. LELIAS SOGETI HIGH TECH, Toulouse (FR)

F. LACHAUD ISAE-SUPAERO, Toulouse (FR)

P-Y. MEYER SOGETI HIGH TECH, Toulouse (FR)

mailto:eric.paroissien@sogeti.com


2
Leader in Engineering and R&D Services

Copyright © Sogeti High Tech 2014. All Rights Reserved

Content

1. SOGETI HIGH TECH
2. FRAME
3. MECHANICAL ANALYSIS
4. MACRO-ELEMENT TECHNIQUE
5. CURRENT CAPABILITIES
6. RELEVANCE
7. APPLICATION



3
Leader in Engineering and R&D Services

Copyright © Sogeti High Tech 2014. All Rights Reserved

Content

SOGETI HIGH TECH



4
Leader in Engineering and R&D Services

Copyright © Sogeti High Tech 2014. All Rights Reserved

Capgemini, founded in 1967, is one of the world foremost

providers of consulting, technology and outsourcing services.

Revenue of 
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In 44 
countries

131.000 
people with 
more than 
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A Capgemini group subsidiary

*offshore = Inde, Vietnam, Maroc, Guatemala, Pologne,...
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Sogeti : Engineering and Technology Consulting Services in 
the world 

Nearly 20.000 employees on 100 locations in 15 countries

▲ Sogeti High Tech business development
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•Leader in Engineering and Technology Consulting Services

o A 25-year long expertise in services for industrial companies
o Seven main markets : 
Aeronautics
 Energy
 Life Sciences
Railway
Space 
Defense
 Telecoms & media

•Five business lines

o Consulting
o Systems Engineering
o Physics Engineering 
o Software Engineering
o Testing

Sogeti High Tech, specialist in Engineering and R&D

Physical 

Engineering

30%

Software 
Engineering

35%

System 
Engineering

15%

Consulting

5%

Testing

15%



7
Leader in Engineering and R&D Services

Copyright © Sogeti High Tech 2014. All Rights Reserved

Bangalore

• 3000 employees in France

• 300 employees in Germany

• 19 locations

• Rank n°1 in the Aeronautics & 
Space sectors

• 5th rank in the French market 
Melun

Paris-Issy les Moulineaux

Strasbourg

Lyon

Grenoble

Nice 
Sophia Antipolis

Aix en Provence

Toulouse

Pau

Bordeaux

La Rochelle

Rennes

Vernon

Hambourg

Filton

Madrid

Séville

Munich

Sogeti High Tech’s locations



8
Leader in Engineering and R&D Services

Copyright © Sogeti High Tech 2014. All Rights Reserved

Content

FRAME



9
Leader in Engineering and R&D Services

Copyright © Sogeti High Tech 2014. All Rights Reserved

Frame

 ID SHEET:

 internal research project

 started in 2008

 self-funding

 workload: 7400 days at the end of June 2015

 DRIVEN LINE

 research theme: joining technologies

 2 research axes: axis bonding and axis bolting

 objectives:  better understanding of the mechanical behavior of bonded joints and bolted joints

1. to develop a simplified mechanical analysis tool

2. to better control these joining technologies

Internal Research Project

JoSAT (Joint Stress Analysis Tool)
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Frame

 ISAE (Institut Supérieur de l’Aéronautique et de l’Espace, Toulouse):

 signed in 2009

 prolongated in 2012 up to 2017

 BORDEAUX INP / ENSEIRB-MATMECA

 our Center of Competences is trusted to teach their students 

the Mechanics of Assemblies (https://www.enseirb-matmeca.fr/syllabus1415/index.php?&module=MS312&langage=EN)

 AN ADHESIVE SUPPLIER

 to be signed but collaborative activities already in progress

THEMES WHAT?

COMPOSITE MATERIALS
2 PhD Theses
1 MS Thesis

JOINING TECHNOLOGIES
1 PhD Thesis
6 MS Theses

Network Development

Partnerships

https://www.enseirb-matmeca.fr/syllabus1415/index.php?&module=MS312&langage=EN
https://www.enseirb-matmeca.fr/syllabus1415/index.php?&module=MS312&langage=EN
https://www.enseirb-matmeca.fr/syllabus1415/index.php?&module=MS312&langage=EN
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Frame

M&P

chemical formulation

material lab testing

MANUFACTURING

process reliability 
(simulation, monitoring)

MECHANICAL ANALYSIS

experimental characterization

modeling, simulation, optimization

OPERATIONS

Repairs

SHM

IT 
SUPPORT

Rationale of Development

1 PhD Thesis
in progress

in building « SWB » 
project

Stress can support M&P, Manufacturing and Operations

Presentation on the 3rd July 2015 at Adhesive Bonding Conference in Porto
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Mechanical Analysis

 Strength prediction consists in comparing computed criteria with allowable.

 The definition of criteria can be based on:

 experimental and theoretical investigations on the failure mechanisms

 in-service feedbacks

 Criteria requires input data , provided by mechanical analysis.

 Allowable are obtained from experimental characterization.

Why?

Strength Prediction
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Mechanical Analysis

How?

 FE method can address the mechanical analysis of bonded joints, to provide input data to criteria.

 Nevertheless, FE analysis:

 is time consuming

 and demands highly skilled engineers to be suitably applied

 The relative difference in thickness between the adhesive and the adherends, and the mesh requirements 
conducts to develop models with a very high number of degrees of freedom

Example of single-lap bonded joint in 3D:

- adherend thickness: 2 mm /  adhesive thickness: 0.2 mm

- 10 cubic elements in adhesive thickness = 0.02 mm each

- transition ratio of 1 imposed at the adhesive interface, an element size of 0.02 mm

potentially 100 elements in the adherend thickness, to be multiplied by length, width mesh 
parameters

Finite Element (FE) Analysis
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Mechanical Analysis

Simplified Analysis

 Various analytical closed-form solutions exist, based on simplifying hypotheses on the kinematics and the 
number of adhesive stress tendon components to be considered, leading to accurate mechanical behavior 
approximation.

 But the application field appears as restricted, even for practical problems (ex: steel to aluminium joint 
including bending and normal displacement)

 To enlarge the application field, mathematical procedures shall be used to solve the set of governing 
differential equations (deduced from hypotheses taken)

The macro-element technique is a mathematical 
procedure

A Mathematical Issue
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Macro-Element Technique

 First developments between 2004 and 2006 in the frame of PAROISSIEN’s PhD [1], to simplify the stress 

analysis of hybrid (bolted/bonded) joints

 Significant extension of the application field since 2008 by SOGETI HIGH TECH in the frame of JoSAT

bonded-beam element

bolt element

beam elementbeam element

Origin

Simplified Analysis of Hybrid Joints

Idea from:
Prof. Marc SARTOR

INSA Toulouse
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Macro-Element Technique

Chronology

From 2004 up to now

MACRO-ELEMENT MATERIAL  LAW STRENGTHANALYSIS

1D-bar 08/2004

05/20051D-beam balanced

1D-beam unbalanced 07/2009

linear elasticmechanical

thermal 07/2010

08/2011non linear 1

GEOMETRY

elastic perfectly
plastic

SLJ SoM

bilinear08/2012
stepped, scarfed

DLJ

non linear 2 09/2013 damage 1 DCB…

09/2014

MLR

coupled crit.
damage mech

visco-elastic
damage 2

systematization vibration
fatigue

new macro-elements
visco-plastic
hyper-elastic

coupled crit.  vs CZM
2015

2004

5 years

JoSAT is
launched

04/2008



19
Leader in Engineering and R&D Services

Copyright © Sogeti High Tech 2014. All Rights Reserved

Macro-Element Technique

 1st STEP: MESHING THE JOINT, in beam (or bar) elements and macro-element.

 Only 1 macro-element is needed for 1 entire overlap

 2nd STEP: ASSEMBLY OF THE STIFFNESS MATRIX (K) for the joint

 KEY POINT: the stiffness matrix of the macro-element (see next slide)

 3rd STEP: APPLICATION OF BOUNDARY CONDITIONS (load and prescribed displacement)

 4th STEP: MINIMIZATION OF POTENTIAL ENERGY

 leading to a linear system to be solved: F=KU 

How?

Inspired by FE Method

Example:
single-lap bonded joint in-plane loaded
membrane + bending

=> the solution consists in inverting a 
13x13 linear system only!
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Macro-Element Technique

Stiffness Matrix (Bonding)

Principle

 (semi-)analytical formulation based on the set of governing differential equations:

 local equilibrium equations

 constitutive equations

There is not any hypotheses on the shape of interpolation functions.  

The shape of interpolation functions is the shape of solutions of  the system of 
governing differential equations
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Macro-Element Technique

1D-Bar Stiffness Matrix (Bonding)

Hypotheses
 linear local equilibrium : 

 VOLKERSEN [2]

 adherend as linear bars:

 including thermal expansion

 linear variation of the adherend shear stress with the thickness as TSAÏ, OPLINGER and MORTON [3]

 adhesive layer as shear springs continuously distributed:

 adhesive thickness constant along the overlap

 adhesive shear stress and shear stress supposed constant in the adhesive thickness

 

u1(x,0) 

x u2(x,0) 

u2(x,0)-u1(x,0) 
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Macro-Element Technique

1D-Beam Stiffness Matrix (Bonding)

Hypotheses
 linear local equilibrium available: 

 GOLAND & REISSNER [4]

 HART-SMITH [5]

adherend as linear Euler-Bernoulli beam:

 in the classical laminated theory

 including thermal expansion 

 linear variation of the adherend shear stress with the thickness as TSAÏ, OPLINGER and MORTON [3]

 adhesive layer as shear and peel springs continuously distributed:

 adhesive thickness constant along the overlap

 adhesive shear stress and shear stress supposed constant in the adhesive thickness
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Macro-Element Technique

1D-Beam Stiffness Matrix (Bonding)

Equations (1)
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shear springs, peel springs
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Macro-Element Technique

1D-Beam Stiffness Matrix (Bonding)

Equations (2)
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Current Capabilities

Input

Geometry
 AS A “LEGO GAME”, various geometrical configurations can be modeled:

 squared-end single-lap as the nominal configuration

 tapered-end single-lap configuration

 double-lap configuration

 fracture mechanics coupons (ENF, DCB, MMB)

 patch or stiffned configuration [POSSIBLE]

 etc…. + including fasteners
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Current Capabilities

Input

Adhesive Material
 VARIOUS ADHESIVE MATERIAL CAN BE SUPPORTED:

 linear elastic

 elastic perfectly plastic [6, 8]

 bilinear (isotropic, kinematic, mixed hardening) [6, 8]

 damage evolution law with various shapes and mixed mode [9]

 visco-elastic including time-temperature dependency
e
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Current Capabilities

Input

Adherend Material
 EULER-BERNOULLI BEAM

 in the frame of the classical laminated theory

 balanced and unbalanced cases

 linear elastic

 LINEAR ELASTIC BEHAVIOR IS NOT A RESTRICTION

 the non-linear algorithm already developed to support non-linear adhesive material

 non linear adherend material could be then implemented
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Current Capabilities

Input

Loading
 STATIC [6-9]

 loading in force or in displacement

 HYDRO-THERMAL

 uniform variation of temperatures [7] and/or of moisture rate

 FATIGUE

 basing on progressive damage approach [10, 11] [algo ok, approach under assessment]

 VIBRATION

mass matrix implemented

 free modes assessment
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Current Capabilities

Output

Results Directly Available
 DISTRIBUTION AT ANY POINTS: 

 displacements in the adherends (u, v, )

 internal forces in the adherends (normal force, shear force, bending moment)

 forces in the fasteners (bolt transfer rate)

 shear stress and peel stress along the overlap

 [EASILY FAISABLE] stress and strain in the adherends can be easily computed from internal forces 

The tool provides input for the computation of strength 
criteria
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Relevance

Validation

Against Available Literature [6]
 GOLAND & REISSNER [4] stress analysis improved by TSAI et al. [3]

 linear elastic adhesive

1D-beam kinematics, simply supported, in-plane mechanically loaded
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Relevance

Validation

Against Degraded FE Model [6]
 Degraded FE model, composed by bars and springs

 elastic perfectly plastic adhesive, after maximal stress yield criterion

 1D-bar kinematics, in-plane mechanically loaded

SLJ
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Relevance

Against refined 3D FE models

 elastic perfectly plastic adhesive after Von Mises yield criterion

 1D-beam kinematics, unbalanced, in-plane mechanically loaded

SLJ

CPU TIME SAVINGS: 50 times faster than FE model

Against Refined FE Model [6,8]

Assessment
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Relevance

With SCILAB Code

Demonstration

 Clamped single-lap bonded joint:

 bilinear elasto-plastic

 kinematic, isotropic and mixed hardening

mechanically loaded

 loading then unloading

SLJ
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Relevance

Early IHM

Demonstration

 Clamped single-lap bonded joint in-plane loaded:

 bilinear damage evolution

mixed mode I/II

 loading then unloading

e


lfm

efm

ef

fm

f

lem

0m
S0

T0

DEMO

SLJ

mode I/II
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Relevance
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VERY GOOD AGREEMENT WITH 3D FE PREDICTIONS

Against refined 3D FE models

 bilinear adhesive damaging evolution law 

 1D-beam kinematics, unbalanced, in-plane mechanically loaded

Against Refined FE models

Demonstration
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Content

APPLICATION
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Application

Hybrid (Bolted / Bonded) Joints

Experimental Test

Identification of material parameters [IN PROGRESS]

 through an optimization  platform

 to analyze failure mechanisms
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experimental results

1D-beam prediction

adhesive layer fastener

adhesive layer thickness: 110 µm adhesive layer thickness: 50 µm
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Application

Process Reliability

Optimization

Simulation of the reliability  of the manufacturing process

 Considering manufacturing knowledge

 Simulation with Monte-Carlo analysis 
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