Agriculture at the crossroads of IIoT and HPC

when real-time observation meets simulation to improve plant proteins and reduce nitrate pollution

Marion CARRIER

Context: increasing expectations and challenges for Agriculture

- Quantitative challenges
 - Answer food supply needs in quantity and quality

- Environmental challenges
 - Reduce environmental impacts (GES, inputs...)
 - Enhance biodiversity
 - Preserve natural ressources
 - Adaptation to climate change

Agriculture uses 70% of planet water every year

100 millions of tons

consummed every year

of nitrates are

Economic challenges Indian coffee declined by ~30% in 12 years

Enhance perennity and competitiveness of the food sectors

Context: Embedded IT and precision farming

- Greenhouses : more and more controlled environments
- Precise sowing, fertilization and irrigation

Variable rate

Controlled by an adapted decision motor ?

Context: More and more capacities for crops observation

Manual measurements
Foliar index, nitrogen stresses

Multiple data acquisition sensors

Embedded sensors yield, chlorophylle...

Technologies numériques pour le monde végétal

Optical, radar imaging

Context: Increasing knowledge in data communication and modeling

- Data communication
 - Low cost data recuperation

- Data models of cropping systems
 - Understanding

Ex: Berries sugar content at harvest for various cepages in same growth conditions

 Data structuration models to visualize and perform utilization of heterogeneous complex datasets

Technologies numériques pour le monde végétal

Context: Increasing knowledge of crops functionning

Understanding of plants functionning enables in silico representation of plant growth

Enables simulation of plant response to a given environment

Enables designing Decision Aid Tools

Baldazzi et al., 2013

CybeleTech: an integrative approach

- Powered by storage and parallel computing technologies
- Accessible thanks to «cloud computing» and web diffusion tools

CybeleTech: an integrative approach

- Powered by storage and parallel computing technologies
- Accessible thanks to «cloud computing» and web diffusion tools

A use case dedicated to wheat, nitrogen and protein

- A 3 years collaborative project started in 2014
- Dedicated to wheat : major representant of field crops in France and Europe
- Proteins: major qualitative value => major price criteria

Wheat price evolution depending of proteins content, French agricultural Chamber of Lorraine.

- Protein concentration depends on variety and environment
 - Creation of amino-acids strongly limited by Nitrogen in wheat

A use case dedicated to wheat, nitrogen and protein

- Nitrogen is the higher cost in wheat production, with seeds
- Its utilization is strongly correlated with plant phenology

Winter wheat calendar

- Its absorption depends on soil physical and biophysical properties
- ⇒when, where and how much inputs to add to optimize yield (quantity, %proteins)?

Existing nitrogen positionning tools

- Soil nitrogen measurement
- + intra-plot exact availability in nitrogen ressource
- Based on an old measurement (1 month at least)

Lab. analysis from soil samples

- Imaging (optical satellite or drone)
- + intra-plot heterogeneity
- + consider plant state
- How to decorrelate nitrogen stress in plant state ?

=> SAS combines wheat growth simulation and real time data acquisition

Consortium complementarity

Wheat growth simulation

Mechanistic crop modelling

Wheat growth simulation

Real Time data acquisition

- « Real Time » Satellite imaging
 - Radar ⇔ any meteorological conditions
 - Supported by historical maps
 - Relevants intra-plot heterogeneities

• To calibrate to output instantaneous LAI and/or biomass

Data assimilation techniques

- Data assimilation in plant growth model
 - Correction of plant state prediction
 - Through re-estimation of stochastic processus and/or parameters
 - By fitting « real time » plant status observation
 - => Unknown environmental properties (soil type...)
 - => Early stages « accidents »

Data assimilation techniques

- Data assimilation in plant growth model
 - Correction of plant state prediction
 - Through re-estimation of stochastic processus and/or parameters
 - By fitting « real time » plant status observation

=> Unknown environmental properties (soil type...)

Optimisation of production through nitrogen inputs

Optimisation of production through nitrogen inputs

Conclusion

- Food production must adapt and be optimized to face new constraints
 - Economical, social, environmental...
- Thanks to coherent sets of technologies
 - Precise crop management tools

Precise manager

- Accurate tools for crops observation
- Numerical technologies to represent and aid acting on cropping systems
- HPC to perform utilization

Thank you!

Questions?

