Applications court terme du calcul quantique

Ou comment travailler avec des qubits bruités

Simon Martiel

10-04-2019

Trusted partner for your Digital Journey

Short term?

- QEC
- 10⁶ qubits
- large circuits

- no QEC
- < 100 qubits

 $\frac{T_1}{gate \ time} < 10^3$

Why work with the paddle boat?

- Quantum \$upremacy might be closer than it looks
- Making early progress might bootstrap the industrialisation process (or at least slow down the investment trough)

- Help & improve hardware design:
 - connectivity?
 - premices of QEC

Very different software approaches...

Compilation	HW dep. (CNOTS -> CZ)	QEC dep. (H/T synthesis, lattice surgery)
Error correction/mitigation	HW dep. mitigation (DFS, Monte Carlo, etc)	Full blown QEC (surface code, color code)
Ressources	Scarce (e.g reuse ancillas)	« less » scarce (e.g runtime ancilla handling)
Software stack	Ad hoc, low level optimization	Highly optimized libraries quantum g++ style

... with a similar end goal (on the programing side, at least)

- Most users won't/shouldn't write quantum circuits (how many of you write code in x64?)
- Need for high level interfaces of quantum « backends »
- ► Think of BLAS/MKL or Cuda
- Can this be achieved for short term applications?

Variational Quantum Eigensolver for combinatorial optimization (aka QAOA)

From adiabatic Quantum Computation to quantum circuits

Turning analogic computation into discrete time computation

- Some Hamiltonian H_C encoding your problem
- Solution of your problem : λ_g , $|g_{H_c}\rangle$ the ground state of H_c
- Adiabatic analog approach to find $|g\rangle$:
 - start by driving $H_0 = -\sum \sigma_x^i$
 - change the drive from H_0 to H_C :

$$H(t) = (t_{max} - t)H_0 + t H_C$$

Adiabatic Theorem:

 $|\langle g_{H_C} | \psi(t_m) \rangle| \to 1$ when $t_{max} \to \infty$ « if it is slow enough, we will end up with $|g_{H_C}\rangle$ »

 $|g_{H_0}\rangle$

 $|g_{H_c}\rangle$

Turning analogic computation into discrete time computation

We want to discretize this path

 $|g_{H_c}\rangle$ Lets do baby steps, driving $H(m\Delta_t)$ during Δ_t 40 steps 10 steps $|g_{H_0}\rangle$ 6 steps

Turning analogic computation into discrete time computation

Our path is, in fact, some unitary operator (Shrödinger):

$$U_{tot} = exp\left(-i\int_{t=0}^{t_{max}} H(t)dt\right)$$

We split the computation into many baby steps of duration Δ_t :

$$U_m = \exp(-i \Delta_t H_m)$$

We can do a first approximation:

$$U'_{tot} = \prod_m U_m$$
 with error $O(\sqrt{\Delta_t poly(n)})$

Followed by another approximation:

$$U'_{m} = \exp\left(-i\Delta_{t}\left(1 - \frac{m\Delta_{t}}{t_{max}}\right)H_{0}\right)\exp\left(-i\Delta_{t}\frac{m\Delta_{t}}{t_{max}}H_{C}\right) \text{ with error } O(\Delta_{t}^{2}||H_{0}H_{C}||)$$
$$U'_{m,0} : \text{ sequence of } R_{x} \qquad U'_{m,C} : ???$$

Adiabatic quantum computation, Albash & Lidar

A discrete time algorithm for combinatorial optimization or the so-called QAOA algorithm

- ▶ Given a function $C : \{0,1\}^n \to \mathbb{R}$ to optimize (i.e find $z^* = \operatorname{argmax}_z \{C(z) | z \in \{0,1\}^n\}$)
 - Encode C into an Hamiltonian:

 $H_C = \sum_{z \in \{0,1\}^n} C(z) |z\rangle \langle z|$

- Prepare state $|+^n\rangle$
- Apply circuit : $\prod_m U'_{m,0} U'_{m,C}$
- Measure all the qubits
- If the number of steps is large enough, the final state should be close to $|z^*\rangle$
- In practice, we limit ourselves to a few steps:

$$|\psi(\gamma,\beta)\rangle = \left[\prod_{m=1}^{p} U_0(\beta_m) \frac{U_c(\gamma_m)}{U_c(\gamma_m)}\right] H^{\otimes n} |0^n\rangle$$

• Use a classical optimizer to maximize $F(\gamma,\beta) = \langle \psi(\gamma,\beta) | H_C | \psi(\gamma,\beta) \rangle$

A discrete time algorithm for combinatorial optimization or the so-called QAOA algorithm

Example : MaxCut

Example : MaxCut

From a « classical » cost function C to H_C

- ▶ Usually: $C(z) = \sum_{\alpha} w_{\alpha} C_{\alpha}(z)$ where $C_{\alpha}: \{0,1\}^n \to \{0,1\}$ are « local » and $w_{\alpha} \in \mathbb{R}$
- Lets assume that each C_{α} is described using a boolean formula: $F := F \wedge F | F \vee F | F \oplus F | \neg F | x_i$
- We define $H_{C_{\alpha}}$ by induction as follows:

$$\begin{split} H_{x_i} &:= \frac{1 - \sigma_z^i}{2} & H_{\neg F} &:= 1 - H_F \\ H_{F_1 \wedge F_2} &:= H_{F_1} H_{F_2} & H_{F_1 \vee F_2} &:= H_{F_1} + H_{F_2} - H_{F_1} H_{F_2} \\ H_{F_1 \oplus F_2} &:= H_{F_1} + H_{F_2} - 2H_{F_1} H_{F_2} \end{split}$$

- Ex: for MaxCut :
 - $C_{\alpha}(z) = z_i \oplus z_j$

$$- H_{z_i \oplus z_j} = H_{z_i} + H_{z_j} - 2 H_{z_i} H_{z_j} = \frac{1 - \sigma_z^i}{2} + \frac{1 - \sigma_z^j}{2} - \frac{1}{2} \left(1 - \sigma_z^i\right) \left(1 - \sigma_z^j\right) = \frac{1 - \sigma_z^i \sigma_z^j}{2}$$

Synthesizing $U_{\mathcal{C}}(\gamma)$

► Usually :

► Hence:

Synthesizing $U_{\mathcal{C}}(\gamma)$: first strategy (graph coloration)

« parity phase shift »

- Find a good order to enumerate the clauses C_{α} :
 - G_C : intersection graph of the clauses C_α C_1 C_2 C_2 C_4

E.g :
$$C(z) = \overline{z_0 \oplus z_1} + \overline{z_1 \wedge z_3} + \overline{z_3 \vee z_0} + \overline{z_0 \wedge z_2}$$

- Find a clean coloration of G_C
- build the circuit according to the coloration
- ▶ In practice: greedy heuristic for graph coloration works fine (depth <= max degree +1).

- ► $U_C(\gamma)$ has a very particular form: $|x\rangle \mapsto \exp(iP(x))|x\rangle$ where:
 - $P: \{0,1\}^n \to \mathbb{R}$
 - $P = \sum_{i} \theta_{i} f_{i}$ where $f_{i}: \{0,1\}^{n} \rightarrow \{0,1\}$ is linear and $\theta_{i} \in \mathbb{R}$
- We consider annotated CNOT circuits:

• A parity network for a such a polynomial P is a CNOT circuit such that for all f_i in P, f_i appears in the corresponding annotated circuit.

$C(z) = z_0 \oplus z_1 + z_1 \wedge z_3 + z_3 \vee z_0 + z_0 \wedge z_0$	<pre>\Lambda Z_2 In [8]: 1 pb = Problem() variables = [pb.new_var() for _ in range(4)] pb.add_clause(variables[0] ^ variables[1]) pb.add_clause(variables[1] & variables[3]) pb.add_clause(variables[3] variables[0]) pb.add_clause(variables[0] & variables[2]) print(pb)</pre>
$q_0 \oplus q_1$ -0.5	Problem over 4 variables: Clause #0: V(0) ^ V(1)
<i>q</i> ₁ -0.25	Clause #1: V(1) & V(3) Clause #2: V(2) V(0)
$q_1 \oplus q_3$ 0.25	Clause #3: V(0) & V(2)
<i>q</i> ₃ -0.5	<pre>In [7]: 1 obs = pb.generate_cost_observable()</pre>
$a_0 \oplus a_3 -0.25$	2 print(obs)
	$1.75 * I^4 + 6 5 * (77 + [0, 1]) +$
$q_0 = 0.5$	-0.25 * (Z [1]) +
$q_0 \oplus q_2 = 0.25$	0.25 * (ZZ [1,3]) +
q_2 -0.25	-0.25 * (ZZ [3,0]) +
	-0.5 * (Z [0]) +
	0.25 * (ZZ [0,2]) +
	-0.25 · (Z [Z])

• E.g:
$$P(x) = \frac{2}{3} x_1 \oplus x_2 + \frac{1}{3} x_0 \oplus x_1 \oplus x_2$$

| 10-04-2019 | Simon Martiel | © Atos

- Finding minimal (in # of CNOTs) parity networks is hard[1]
- But there exists some nice heuristics :
 - based on Gray-code enumeration
 - provably optimal when P contains all the possible f_i
- ► For a random cost function *C* over 10 bits:
 - parity network synthesis : 50% less CNOTs compared to naive approach
 - but no control on the circuit depth

[1]. On the cnot complexity of cnot-phase circuits, by Amy, Azimzadeh, Mosca

Parity network synthesis in trapped ions

Working with fan-in/out CNOT gates:

- Synthesis is :
 - « cheap » : depends on some property of the interaction graph (for 2-parities)
 - « complicated »: this property is hard to quantify (related to smallest Vertex Cover)

First of all : 2-parities are universal

- Say we have « large » parities $C \sigma_z^{i_1} \sigma_z^{i_2} \dots \sigma_z^{i_k}$ in H_C
- We can « split » it into:

 $\underbrace{C \sigma_z^{i_1} \sigma_z^{i_2} \dots \sigma_z^{i_k}}_{k} \equiv \pm |C| \left(\underbrace{\sigma_z^a \sigma_z^{i_1} \dots \sigma_z^{i_l}}_{l+1} - \operatorname{sign}(C) \underbrace{\sigma_z^a \sigma_z^{i_{l+1}} \dots \sigma_z^{i_k}}_{k-l+1} \right)$

some ancilla

3-parities can also be decomposed:

$$\sigma_z^1 \sigma_z^2 \sigma_z^3 \equiv \sigma_z^1 \sigma_z^2 + \sigma_z^2 \sigma_z^3 + \sigma_z^1 \sigma_z^3 + \sum \left[\sigma_z^i \sigma_z^a - \sigma_z^i \right] - 2\sigma_z^a$$

Embedding (2) Ising models

$$H = \sum h_i \sigma_z^i + \sum J_{i,j} \sigma_z^i \sigma_z^j$$

spins (±1)

• Correspondance with the **QUBO** framework:

$$C(z) = \sum c_i z_i - \sum J_{i,j} z_i z_j$$
boolean variables (0,1)

Embedding (2) Ising models

$$H = \sum h_i \sigma_z^i + \sum J_{i,j} \sigma_z^i \sigma_z^j$$

Problem connectivity

VS.

Hardwa re graph

| 10-04-2019 | Simon Martiel | © Atos

LHZ Scheme : the physicists approach

LHZ, A quantum annealing architecture with all-to-all connectivity from local interactions

| 10-04-2019 | Simon Martiel | © Atos

LHZ Scheme : using stabilisers

- LHZ re-expressed as:
 - local drives
 - + stabilisers constraints
- Allow more general embedding schemes
- Still constrained on a grid-like structure

RBL, Stabilisers as a design tool for new forms of Lechnes-Hauke-Zoller Annealer

The minor embedding approach (by D-wave)

- Embed the interaction graph as a minor of the hardware graph
- 1 spin == a subtree of the hardware graph
- Smallest hardware graph that:
 - can embed any graph of size $\leq n$
 - has a limited connectivity (grid-like)
 - has « simple » embeddings (easy to compute)
- Possible answer: a triad graph, or a chimera-graph

Vicky Choi, Minor-Embedding in Adiabatic Quantum Computation (part I & II)

The minor embedding approach (by D-wave)

 K_4

In general : same overhead of $O(n^2)$

Triad graph

Vicky Choi, Minor-Embedding in Adiabatic Quantum Computation (part I & II)

 K_3

Combinatorial optimization inside the QLM

Thank you

For more information please contact:

simon.martiel@atos.net

Atos, the Atos logo, Atos Syntel, Unify, and Worldline are registered trademarks of the Atos group. March 2019. (© 2019 Atos. Confidential information owned by Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Atos.

