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Machine learning in a nutshell



Symbolic AI vs. Machine Learning



The goal of machine learning

Finding a function

• Example : Pedestrian detection from video cameras

• What is the search space for such a function?



The art of machine learning

Solving the ”bias-variance” trade-off

• Distance between solution provided by a learning method and
the optimal solution (function): sum of Approximation error
and Estimation error

• Learning a function amounts to:

(a) chosing a search space (design process),
(b) estimating the best function in this space (training process).



Mainstream ML methods



The three central paradigms of ML

1 Local methods: based on grouping and local voting (or
averaging)
• k-Nearest-Neighbors
• Kernel rules
• Decision trees

2 Global methods: based on functional optimization
• Regularized regression (Ridge, LASSO...)
• Support Vector Machines
• Boosting
• Feedforward neural networks

3 Ensemble methods: based on resampling and aggregation
• Bagging
• Boosting
• Random forests



Shallow vs. Deep Learning

• Shallow learning: often relates to Tikohnov’s regularization

min
h∈H

(
1

n

n∑
i=1

`(h(Xi ),Yi ) + λn · pen(h, n)

)

• The penalty controls the variance term (Occam’s razzor)
• It may also induce a desired structure of the function (e.g.

sparsity).

• Deep Learning:

• Universal approximators (zero bias)
• No penalty term in the optimization but lots of tricks in the

implementation which amount to implicit regularization



The case of Deep Learning



Deep Feedforward Network (DFN)

• Search space: functions of the form

h(x , θ) = σm ◦ Am ◦ σm−1 ◦ ... ◦ A2 ◦ σ1 ◦ A1x

where θ =
(
A1, . . . ,Am

)
sequence of parameters to be

estimated through learning, and σ =
(
σ1, . . . , σm

)
are the

so-called activation functions.



Learning a DFN
A two-stage procedure

Design process - The architecture of the Deep Network has to be
selected. This amounts to chosing hyperparameters:

• The number of layers m

• The nature of the activation functions σ (sigmoid, ReLU...)

• The number of units per layer dj (number of rows of Aj , j = 1, . . . ,m)

• Plus various optional operators used at each layer (pooling,

convolution...)

Training process (next slide)



Training a DFN

For a given set of hyperparameters, find θ from the data

• Optimization objective (far from convex!):

min
θ

1

n

n∑
i=1

`(h(Xi , θ),Yi )

• Optimization method based on stochastic gradient descent
(iterates over data points)

θi+1 = θi − η
∂`(h(Xi , θ),Yi )

∂θ
(θi )

until convergence...



Bias-variance revisited



Approximation, Estimation and
Optimization

[The trade-offs of Large Scale Learning, L. Bottou, O. Bousquet, 2011]

Trade-off wrt: Search space F , sample size n, numerical tolerance ρ



The loss landscape of Deep Learning

View on a 56-layer neural network without skip-connection

From [Visualizing the Loss Landscape of Neural Nets,

H. Li, Z. Xu1, G. Taylor, C. Studer, T. Goldstein, 2018]



Some hope for Deep Learning

• Under certain conditions, no poor local minima

• SGD avoids bad critical points

• Larger networks are better behaved (local minima are global)

References:
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Janzamin, Sedghi, and Anandkumar (2015), “Beating the perils of non-convexity: Guaranteed training of neural
networks using tensor methods”.
Panageas and Piliouras (2016), “Gradient descent only converges to minimizers: Non-isolated critical points and
invariant regions”.
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The theory of a double descent risk curve

How Deep Learning (and random forests) avoid overfitting

From [Reconciling modern machine learning and the bias-variance
trade-off, M. Belkin, D. Hsu, S. Ma, S. Mandal, 2018]



The seven sins of Deep Learning



The big picture



Some facts about Deep Learning

1 Design process involves random search in ”cursed” spaces

2 Training process needs huge amounts of data

3 Training process highly demanding in computing power

4 Failure of reproducibility

5 Representation learning generates ”monsters”

6 Leads to black-box decision systems

7 Performs often worst than shallow learning



Why Deep Learning may not be the cure

• How to bridge prediction with optimization? Towards risk
communication...

• The design process is more complex than the training
process and often leads to suboptimal architectures

• Representation learning is not magical: the structure of the
search space has to reflect the ”physics” underlying the data

• The success of any Machine Learning method is tied to the
assumption of stationarity: this is not handled by the ML
method itself but requires a monitoring algorithm assessing
observed performance and breaks of stationarity



Discussion



The key ingredients of any Machine
Learning method

• Information (data compression, data representation)

• Design process

• Training process

• Assessment and Monitoring



Research worth being done

• Hybrid modeling

physics- or simulation-based AND data-driven

• Expert-based and data-driven representation learning

Plugging prior knowledge into the representation learning step and

also in the regularization principles

• Global optimization

Useful for architecture design to refine the design stage

• Statistical procedures and signal processing for monitoring ML
methods

Such as homogeneity tests, confidence bounds, breakpoint detection



For researchers and engineers


