
Quantum programming and
automatic code analysis
Christophe Chareton, Sébastien Bardin

08/06/2023

Quantum computing : our challenge

How?

Hardware

Algos

1. Quantum programming, program specifications and
verification

2. Main challenges

3. A word about our works

Quantum programming and formal verification

08/06/2023

08/06/2023

The hybrid model
A quantum co-processor (QPU), controlled by a classical computer

● classical control flow

● CPU ⇒ QPU : quantum computing requests, sent to the QPU

→structured sequenced of instructions: quantum circuits

● QPU ⇒ CPU: probabilistic computation results (classical information)

Verification : specifications

A specification preamble:
• Input parameters (size, oracle, etc)
•Functional correctness: Inputs-Outputs relation
•Complexity: number of elementary operations

08/06/2023

Verification : specifications

A specification preamble:
• Input parameters (size, oracle, etc)
•Functional correctness: Inputs-Outputs relation
•Complexity: number of elementary operations

Adequate implementation should come
with evidence regarding the specs

08/06/2023

Verification : specifications

A specification preamble:
• Input parameters (size, oracle, etc)
•Functional correctness: Inputs-Outputs relation
•Complexity: number of elementary operations

08/06/2023

Verification : specifications

A specification preamble:
• Input parameters (size, oracle, etc)
•Functional correctness: Inputs-Outputs relation
•Complexity: number of elementary operations

● Specification: the circuit should meet the spec for any
value of parameters

● Quantum programming is non-intuitive
→High risk for bugs!

08/06/2023

Verification : specifications

A specification preamble:
• Input parameters (size, oracle, etc)
•Functional correctness: Inputs-Outputs relation
•Complexity: number of elementary operations

● Specification: the circuit should meet the spec for any
value of parameters

● Quantum programming is non-intuitive
→High risk for bugs!

Adequate implementation should come
with universally valid evidence

regarding the specs
– Functionality
– Complexity
– Well-formedness

08/06/2023

08/06/2023

Standard debuguing techniques fail...

Potential
method

Drawback

Assertion
checking ?

Requires (destructive)
measurement with highly

superposed states

Final test ? How to pinpoint error
source ?

Simulation ? As far as we don’t need a
Quantum Computer !

08/06/2023

Static analysis ? A naive example...

y

y<= 0 ?

x := -y x := y

Post {0<=x}

08/06/2023

Static analysis ? A naive example...

y

y<= 0 ?

x := -y x := y

Test :
– Case y =0
– Case y =-3
– Case y =27
.....

-What about y = 17 ?
-What about y = 128... ...123 ?

Post {0<=x}

08/06/2023

Static analysis ? A naive example...

y

y<= 0 ?

x := -y x := y

Test :
– Case y =0
– Case y =-3
– Case y =27
.....

-What about y = 17 ?
-What about y = 128... ...123 ?

Static reasoning :

𝐲 ≤ 𝟎 | 𝒚 > 𝟎

𝐲 <= 𝟎
...

𝟎 <= 𝐱

 𝐲 > 𝟎
 ...

 𝟎 <= 𝐱
𝟎 <= 𝐱

Post {0<=x}

08/06/2023

Standard debuguing techniques fail...
... the alternative of formal verification

Build on best practice of formal verification for the classical
case and tailor them to the quantum case

Potential
method

Drawback

Assertion
checking ?

Requires (destructive)
measurement with highly

superposed states

Final test ? How to pinpoint error
source ?

Simulation ? As far as we don’t need a
Quantum Computer !

Testing/Asserti
on checking

Formal verification

executions/si
mulations

static analysis, no need to
execute

bounded
parameters

scale insensitive/any
instance

statistical
arguments

absolute, mathematical
guarantee

08/06/2023

Standard debuguing techniques fail...
... the alternative of formal verification

Build on best practice of formal verification for the classical
case and tailor them to the quantum case

Testing/Asserti
on checking

Formal verification

executions/si
mulations

static analysis, no need to
execute

bounded
parameters

scale insensitive/any
instance

statistical
arguments

absolute, mathematical
guarantee

Needs 3 main ingredients :

 Formal semantics
 Spec language
 Proof engine

+ object languageC
o-

de
si

gn

1. Quantum programming, program specifications and verification

2. Main challenges

- co-design object/specifications languages

- symbolic representation for standard programing
features

3. A word about our works

Quantum programming and formal verification

08/06/2023

The current quantum programming solutions rely on sequential descriptions of elementary quantum
operations, similar to classical assembly programs.

08/06/2023

User-friendly programming languages

– The need for programming features/primitives ...

– High-levelled, as far as possible

– With intuitive procedural meaning and/but ...

– ... Formally interpretable

– ... and for characteizing this « formally »

– How to hold the « big picture » ?
– Unavoidable side reasoning in a « formal » setting

– formal interpretation language on top of the
object programming language ?

Formal reasoning is natural !

– Path-sums for Grover diffusor :

08/06/2023

Co-designing object language/proof engine

– Interface :
trade-off established view ⇔ formal reasoning
forecast

– Further extensions : path-sums splitting, linear
combinations of PS,etc

|𝑥〉𝑐𝑜𝑚𝑝 1

22𝑛
∑
𝑦 ∈𝐵𝑉2𝑛

𝑒𝑖 𝜋 (
𝑥𝑦1

2
+
𝑦1𝑦2

2
 +
∏𝑦𝑖1

2
) |𝑘(𝑥,𝑦)〉 |𝑥〉𝐻𝑋⊗𝑛 𝑒𝑖 𝜋 (∏𝑥

2
) |𝑥〉

User friendly programming features
//

Tractable formal representation

– Modular reasoning only for sequence/parallelism → assembly code

– Any higher-level consideration requires adaptation : eg. Subcircuit control

08/06/2023

Symbolic representations, the case of subcircuit
control

– Modular reasoning only for sequence/parallelism → assembly code

– Any higher-level consideration requires adaptation : eg. Subcircuit control

08/06/2023

– |𝑥〉
𝑈 1

2𝒓
∑
𝑦 ∈𝐵𝑉𝒓

𝑒𝑖 𝜋 𝒑𝒉(𝒙,𝒚) |𝒌(𝒙,𝒚)〉

– |𝑥〉
𝐶−𝑈 1

2𝒓
∑
𝑦 ∈𝐵𝑉𝒓

𝑒
𝒊 𝝅 (𝒄∗𝒑𝒉 𝑥,𝑦 + 𝒄 𝑎𝑟𝑐𝑐𝑜𝑠(1

2𝒓
))

|𝒄 ∗ 𝒌(𝒙,𝒚) +

𝒄 𝒙〉

– |𝑥〉
𝐶−𝑈 1

2𝒓(1+ 𝒄)
∑
𝑦 ∈𝐵𝑉𝒓

𝑒𝒊 𝝅 (𝒄∗𝒑𝒉 𝑥,𝑦) |𝒄 ∗ 𝒌(𝒙,𝒚) + 𝒄 𝒙〉

Trade-off SR computing
performance Vs

expressivity

Symbolic representations, the case of subcircuit
control

Tune formal representation in view
of programming interpretation

08/06/2023

Standard interpretation as matrices :

– Cumbersome
– Requires higher-order reasoning

Symbolic representations, the case of
measurement

08/06/2023

Standard interpretation as matrices :

– Cumbersome
– Requires higher-order reasoning

Low-level
Processes

High-level
processes

Continuous Discrete

Deterministic Probabilistic

Unitary Non-unitary

Open problem : to find unified tractable
symbolic representations

Symbolic representations, the case of
measurement

1. Quantum programming, program specifications and verification

2. Main challenges

3. A word about our works

Quantum programming and formal verification

08/06/2023

08/06/2023

Qbricks core : achievements
MAJOR ACHIEVEMENTS

● a core development framework for parametrized

verified quantum programming

● first ever verified implementation of Shor order

finding algorithm (95% proof automation),

– Slide TS

08/06/2023

Toward a formally verified stack : first prototype
Imbricks code for qft(k)
• 7 lines of codes
• 13 lines of specifications

• Functional specs :

• Performance specs : Size ≤ c•k²
• Well-formedness

Imbricks

Standard Oqasm IR
for instances of k :

k Lines of code

5 20

20 200

80 3200

Oqasm

IBM simulator

k Simulation
time

5 4’’

20 10’’

80 Non feasible

Simulation

Mathematical
theorems library

12 interactive
commands

to guide the proof

– Slide TS

08/06/2023

Toward a formally verified stack : first prototype
Imbricks code for qft(k)
• 7 lines of codes
• 13 lines of specifications

• Functional specs :

• Performance specs : Size ≤ c•k²
• Well-formedness

Imbricks

Standard Oqasm IR
for instances of k :

k Lines of code

5 20

20 200

80 3200

Oqasm

IBM simulator

k Simulation
time

5 4’’

20 10’’

80 Non feasible

Simulation

Mathematical
theorems library

Formal reasoning driven syntax
Proof

acceleration

Proven
compilation

Hybrid SR +
reasoning

• Integration in the national strategy
• PEPR EPIC: (1 task lead/ collabs ac LMF,DSCIN,DILS ...)
• Initiative HQI: (1 WP lead)

08/06/2023

Any question ?
Christophe Chareton

Christophe.chareton@cea.fr

