

Quantum programming and automatic code analysis

Christophe Chareton, Sébastien Bardin

Quantum programming and formal verification

1. Quantum programming, program specifications and verification

- 2. Main challenges
- 3. A word about our works

The hybrid model

A quantum co-processor (QPU), controlled by a classical computer

- classical control flow
- CPU \Rightarrow QPU : quantum computing requests, sent to the QPU

→structured sequenced of instructions: quantum circuits

• QPU ⇒ CPU: **probabilistic** computation results (**classical** information)

Inputs: (1) A black box $U_{x,N}$ which performs the transformation $|j\rangle|k\rangle \rightarrow |j\rangle|x^jk \mod N$, for x co-prime to the L-bit number N, (2) $t = 2L + 1 + |\log(2 + \frac{1}{2\epsilon})|$ qubits initialized to $|0\rangle$, and (3) L qubits initialized to the state $|1\rangle$.

Outputs: The least integer r > 0 such that $x^r \equiv 1 \pmod{N}$.

Runtime: $O(L^3)$ operations. Succeeds with probability O(1).

A specification preamble:

- Input parameters (size, oracle, etc)
- Functional correctness: Inputs-Outputs relation
- **Complexity**: number of elementary operations

initial state

Inputs: (1) A black box $U_{x,N}$ which performs the transformation $|j\rangle|k\rangle \rightarrow |j\rangle|x^{j}k \mod N$, for x co-prime to the L-bit number N, (2) $t = 2L + 1 + |\log (2 + \frac{1}{2\epsilon})|$ qubits initialized to $|0\rangle$, and (3) L qubits initialized to the state $|1\rangle$.

Outputs: The least integer r > 0 such that $x^r \equiv 1 \pmod{N}$.

Runtime: $O(L^3)$ operations. Succeeds with probability O(1).

Procedure:

A specification preamble:

- Input parameters (size, oracle, etc)
- Functional correctness: Inputs-Outputs relation
- Complexity: number of elementary operations

Adequate implementation should come with evidence regarding the specs

A specification preamble:

- Input parameters (size, oracle, etc)
- Functional correctness: Inputs-Outputs relation
- Complexity: number of elementary operations

A specification preamble:

- Input parameters (size, oracle, etc)
- Functional correctness: Inputs-Outputs relation
- Complexity: number of elementary operations

Standard debuguing techniques fail...

Potential method	Drawback
Assertion checking ?	Requires (destructive) measurement with highly superposed states
Final test?	How to pinpoint error source ?
Simulation ?	As far as we don't need a Quantum Computer !

Static analysis ? A naive example...

Static analysis ? A naive example...

Static analysis ? A naive example...

Post {0<=x}

Static reasoning : $y \le 0 | y > 0$ $y \le 0 | y = x$

Standard debuguing techniques fail... ... the alternative of formal verification

Potential method	Drawback		Testing/Asserti on checking	Formal verification
Assertion checking?	Requires (destructive) measurement with highly superposed states How to pinpoint error source ?		executions/si mulations	static analysis, no need to execute
Final test ?			b ounded parameters	scale insensitive/any instance
Simulation ?	As far as we don't need a Quantum Computer !		statistical arguments	absolute, mathematical guarantee

Build on **best practice** of formal verification for the classical case and **tailor them to the quantum** case

Standard debuguing techniques fail... ... the alternative of formal verification

Need**s 3 main ingredients :**

- Formal semantics
- Spec language
 - Proof engine + object language

Testing/Asserti on checking	Formal verification
executions/si mulations	static analysis, no need to execute
b ounded parameters	scale insensitive/any instance
statistical arguments	absolute, mathematical guarantee

Build on **best practice** of formal verification for the classical case and **tailor them to the quantum** case

Quantum programming and formal verification

- 1. Quantum programming, program specifications and verification
- 2. Main challenges
 - co-design object/specifications languages
- symbolic representation for standard programing features
- 3. A word about our works

User-friendly programming languages

The current quantum programming solutions rely on **sequential descriptions** of elementary quantum operations, similar to classical **assembly programs**.

- The need for **programming** features/primitives ...
 - High-levelled, as far as possible
 - With **intuitive** procedural meaning and/but ...
 - ... Formally interpretable
- ... and for characteizing this « formally »

- How to hold the « big picture » ?
- Unavoidable side reasoning in a « formal » setting
 - formal interpretation language on top of the object programming language ?

Formal reasoning is natural !

Co-designing object language/proof engine

Symbolic representations, the case of subcircuit control

- Modular reasoning only for sequence/parallelism \rightarrow assembly code
- Any higher-level consideration requires adaptation : eg. Subcircuit control

State		Density operator			
 ● ⟩1	=	$\alpha 0\rangle_1+\beta 1\rangle_1$	$ x\rangle\langle x $	=	$\begin{pmatrix} \alpha \overline{\alpha} & \alpha \overline{\beta} \\ \beta \overline{\alpha} & \beta \overline{\beta} \end{pmatrix}$
$e^{i\pi\theta} \bullet\rangle_1$	=	$e^{i\pi\theta}\alpha 0\rangle_1+e^{i\pi\theta}\beta 1\rangle_1$	$e^{i\pi\theta} x\rangle\!\langle x e^{-i\pi\theta}$	=	$\begin{pmatrix} \alpha \overline{\alpha} & \alpha \overline{\beta} \\ \beta \overline{\alpha} & \beta \overline{\beta} \end{pmatrix}$
$ \bullet\rangle_0?(\bullet\rangle_1;e^{i\pi\theta} \bullet\rangle_1)$	=	$\begin{array}{c} \alpha_0 \alpha_1 0\rangle_0 0\rangle_1 + \\ \alpha_0 \beta_1 0\rangle_0 1\rangle_1 + \\ e^{i\pi\theta} \beta_0 \alpha_1 1\rangle_0 0\rangle_1 + \\ e^{i\pi\theta} \beta_0 \beta_1 1\rangle_0 1\rangle_1 \end{array}$	$ \begin{array}{l} (0\rangle\langle 0 x\rangle_1 + e^{-i\pi\theta} 1\rangle\langle 1 x\rangle_1) \\ (e^{i\pi\theta} \langle x _1 1\rangle\langle 1 + \langle x _1 0\rangle\langle 0) \end{array} $	=	$\begin{pmatrix} \alpha_{0}\alpha_{1}\overline{\alpha_{0}\alpha_{1}} & \alpha_{0}\alpha_{1}\overline{\alpha_{0}\beta_{1}} & e^{-i\pi\theta}\alpha_{0}\alpha_{1}\overline{\beta_{0}\alpha_{1}} & e^{-i\pi\theta}\alpha_{0}\alpha_{1}\overline{\beta_{0}\beta_{1}} \\ \alpha_{0}\beta_{1}\overline{\alpha_{0}\alpha_{1}} & \alpha_{0}\beta_{1}\overline{\alpha_{0}\beta_{1}} & e^{-i\pi\theta}\alpha_{0}\beta_{1}\overline{\beta_{0}\alpha_{1}} & e^{-i\pi\theta}\alpha_{0}\beta_{1}\overline{\beta_{0}\beta_{1}} \\ e^{i\pi\theta}\beta_{0}\alpha_{1}\overline{\alpha_{0}\alpha_{1}} & e^{i\pi\theta}\beta_{0}\alpha_{1}\overline{\alpha_{0}\beta_{1}} & \beta_{0}\alpha_{1}\overline{\beta_{0}\alpha_{1}} & \beta_{0}\alpha_{1}\overline{\beta_{0}\beta_{1}} \\ e^{i\pi\theta}\beta_{0}\beta_{1}\overline{\alpha_{0}\alpha_{1}} & e^{i\pi\theta}\beta_{0}\beta_{1}\overline{\alpha_{0}\beta_{1}} & \beta_{0}\beta_{1}\overline{\beta_{0}\alpha_{1}} & \beta_{0}\beta_{1}\overline{\beta_{0}\beta_{1}} \end{pmatrix}$
$ \bullet\rangle_0?(\bullet\rangle_1; \bullet\rangle_1))$	=	$\begin{array}{c} \alpha_0 \alpha_1 0\rangle_0 0\rangle_1 + \\ \alpha_0 \beta_1 0\rangle_0 1\rangle_1 + \\ \beta_0 \alpha_1 1\rangle_0 0\rangle_1 + \\ \beta_0 \beta_1 1\rangle_0 1\rangle_1 \end{array}$	$(0\rangle\langle 0 x\rangle_1 + 1\rangle\langle 1 x\rangle_1) (\langle x _1 1\rangle\langle 1 + \langle x _1 0\rangle\langle 0)$	=	$\begin{pmatrix} \alpha_0\alpha_1\overline{\alpha_0\alpha_1} & \alpha_0\alpha_1\overline{\alpha_0\beta_1} & \alpha_0\alpha_1\overline{\beta_0\alpha_1} & \alpha_0\alpha_1\overline{\beta_0\beta_1} \\ \alpha_0\beta_1\overline{\alpha_0\alpha_1} & \alpha_0\beta_1\overline{\alpha_0\beta_1} & \alpha_0\beta_1\overline{\beta_0\alpha_1} & \alpha_0\beta_1\overline{\beta_0\beta_1} \\ \beta_0\alpha_1\overline{\alpha_0\alpha_1} & \beta_0\alpha_1\overline{\alpha_0\beta_1} & \beta_0\alpha_1\overline{\beta_0\alpha_1} & \beta_0\alpha_1\overline{\beta_0\beta_1} \\ \beta_0\beta_1\overline{\alpha_0\alpha_1} & \beta_0\beta_1\overline{\alpha_0\beta_1} & \beta_0\beta_1\overline{\beta_0\alpha_1} & \beta_0\beta_1\overline{\beta_0\beta_1} \end{pmatrix}$

Symbolic representations, the case of subcircuit control

- Modular reasoning only for sequence/parallelism → assembly code
- Any higher-level consideration requires adaptation : eg. Subcircuit control

Symbolic representations, the case of measurement

Standard interpretation as matrices :

- Cumbersome

Requires higher-order reasoning

x	:=	x X
$ x\rangle$	\xrightarrow{A}	$\mathbf{MAT}(A) \cdot x\rangle \langle x \cdot \mathbf{MAT}(A)^{\dagger}$
		$= \mathbf{MAT}(A) \cdot x \not \mathbf{MAT}(A) \cdot x ^{\dagger}$
$ x\rangle$	$\xrightarrow{(AB)}$	$\mathbf{MAT}(AB) \cdot x\rangle\langle x \cdot \mathbf{MAT}(AB)^{\dagger}$
		$= \mathbf{MAT}(B) \cdot \mathbf{MAT}(A) \cdot x \mathbf{\mathbf{XMAT}}(B) \cdot \mathbf{MAT}(A) \cdot x ^{\dagger}$
$ x\rangle$	$\xrightarrow{Meas_m}$	$\frac{\mathbf{Meas}_m \cdot x\rangle \langle x \cdot \mathbf{Meas}_m^\dagger}{tr(\mathbf{Meas}_m^\dagger \mathbf{Meas}_m x\rangle \langle x)}$
		$\mathbf{Meas}_m = \sum_j \left(\mathbf{MAT}(ID)^{\otimes i} \otimes j\rangle \langle j ^{\dagger} \otimes \mathbf{MAT}(ID)^{\otimes k} \right)$

Symbolic representations, the case of Low-level Standard interpretation as matrices :

|x|

Open problem : to find **unified tractable** symbolic **representations**

 $\mathbf{Meas}_m = \sum_j \left(\mathbf{MAT}(ID)^{\otimes i} \otimes |j\rangle \langle j|^{\dagger} \otimes \mathbf{MAT}(ID)^{\otimes k} \right)$

High-level

processes

Quantum programming and formal verification

- **1.** Quantum programming, program specifications and verification
- **2. Main challenges**
- 3. A word about our works

Qbricks core : achievements

MAJOR ACHIEVEMENTS

- a core development framework for **parametrized verified quantum programming**
- first ever verified implementation of Shor order finding algorithm (95% proof automation),

Compared proof effort for shared case studies

Abstract. While recent progress in quantum hardware open the door for significant speedup in certain key areas, quantum algorithms are still hard to implement right, and the validation of such quantum programs is a challenge. In this paper we propose QBRUCKS, a formal verification environment for circuit-building quantum programs, featuring both parametric specifications and a high degree of proof automation. We propose a logical framework based on first-order logic, and develop the main tool we rely upon for achieving the automation of proofs of quantum specification: PPS, a parametric extension of the recently developed path sum semantics. To back-up our claims, we implement and verify parametric versions of several famous and non-trivial quantum algorithms, including the quantum parts of Shor's integer factoring, quantum phase estimation (QPE) and Grover's search.

Keywords: deductive verification, quantum programming, quantum circuits

Introduction

Toward a formally verified stack : first prototype

Toward a formally verified stack : first prototype

Any question ?

Christophe Chareton Christophe.chareton@cea.fr

