

Quantum Computing with single photons

Perceval, an open-source framework for photonic quantum computing

Jean Senellart, 29/05/2024

- About Quandela
- 101 Photonic Quantum Computing : how to build your own Quantum
 - Computer!
- The Software Stack exQalibur, MosaiqOS, Perceval and the Quantum

About Quandela

101 Photonic Quantum Computing : how to build your own Quantum

Computer!

The Software Stack – exQalibur, MosaiqOS, Perceval and the Quantum

• About Quandela

> 101 Photonic Quantum Computing : how to build your own Quantum Computer!

• The Software Stack – exQalibur, MosaiqOS, Perceval and the Quantum

Quandela Today: A full stack Quantum Computing company

Photonics, an optimal platform for universal QC

	Manufacturing	Capability to build and deliver several industry grade QCs / year
	Adaptability	Low cooling constraints, ease-of-integration in current datacenters, energy efficient
R	Hybridization	Ability to be connected to classical CPU, GPUs, and integrated into current infrastructures (computing, networks and communication)
	Algorithms	Ready-to-use optimized primitives
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Scalability	Single Photon is the only particle able to transport quantum state between multiple computers

### Digital Quantum Computing Approaches



Quandela exploits the <u>efficient manipulation of optical qubits</u> but tackle probabilistic nature of gates with a <u>matter-based qubit generator</u>

# Q Computing with light The Physics – 101



### **Quandela Photons**

Infrared

800

- Light is an electromagnetic wave described by Maxwell's equations
- A single photon is the quantum of light. It is an indivisible particle-like entity behaving as both a particle and a wave.
- The energy of a single photon is:  $E = \frac{hc}{\lambda}$ . For visible light:  $E < 1aJ (10^{-18}J)$
- A single photon will **only** interfere with another single photon at the same position, wavelength, polarization.
  - → Such photons are called **indistinguishable**
- Single Photons can be deterministically generated using <u>quantum dots</u>



Violet

400

Ultraviolet

300 λ (nm)

Blue

Visible light

Yellow

600

Green

500

Orange

Red

700

# Q Quantum Computing with Light



### Superposition

### Interference – Mach-Zehnder interferometer











a a a a a a

# Q Computing with light The Optics - 101

PERCEVAL

- As a particle of light, a photon will have the different properties:
  - Speed of a single photon depends on the refractive index of a material <u>change of speed can</u> <u>be used to change phase of a single photon</u> (practically we can use *change of temperature*)
  - When a single photon hits a new material boundary, it can be **<u>refracted</u>** or <u>**reflected**</u>
  - A single photon can be **absorbed** by almost any material on its way (**photon loss**)
- Common passive optical elements are: beamsplitters, polarizers, mirrors, etc... which follows linear equations (<u>linear optics</u>)
- Single photons can be detected with high accuracy with Superconducting Nanowire Single-Photon Detector (<u>SNSPD</u>)



*Figure adapted from: Natarajan et al. Supercond. Sci. Technol. 25, 063001 (2012).* 

# Q Computing with light With optical components





# Q Computing with light On photonic chip





# Q Computing with light Linear Optics - 101



• Linear optics transformations can be represented by unitary matrices

The phase-shifter:



(more generally any 2-mode unitary is a beam-splitter)

• A **universal interferometer** can implement any unitary transformation

(more generally any 1-mode unitary is a phase-shifter)

 $\begin{vmatrix} E_C \\ E_D \end{vmatrix} = \begin{vmatrix} e^{i\varphi} & 0 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} E_A \\ E_D \end{vmatrix}$ 

 $E_A$  _____  $E_C$ 

 $E_B$  _____  $E_D$ 



## Q Computing with light The Mathematics – 101

• Input/Output State is represented by a Fock state

$$|s\rangle = |n_0, n_1, n_2, n_3\rangle$$

• Quantum State is given by:

 $s = \sum_{i} \alpha_{i} |s_{i}\rangle$  where  $\alpha_{i}$  is the **probability amplitude** of  $|s_{i}\rangle$ 

- Fock space size is  $M_n = \binom{n+m-1}{m-1} = \frac{(n+m-1)!}{n!(m-1)!} \sim 4^n$  (for m=2n)
- Probability amplitude of a specific circuit output given a specific unitary is given by <u>Permanent</u> of the scattering matrix:

$$\langle t|U|s\rangle = \frac{\widetilde{perm}(U_{|s\rangle,|t\rangle})}{\sqrt{s_1!,\dots,s_m!\,t_1!,\dots,t_m!}}$$





# Q Computing with light Calculating the Permanent

What does a Photonic QPU can do

- A QPU performs <u>sampling tasks</u>
- Sampling distribution is driven by a mathematical operation on a matrix called "Permanent"

$$perm(U) = \sum_{\sigma \in S(n)} \prod_{i=1}^{n} u_{i,\sigma(i)}$$

• Calculating the Permanent is #P-hard !

### The Permanent



3	1	2	3	2	1	
С	а	b	С	b	а	
f	d	е	f	е	d	
i	g	h	i	h	g	

aei + afh + bdi + bfg + cdh + ceg =(17 operations)

### With some optimizations: a(ei + fh) + b(di + fg) + c(dh + eg)(14 operations)

Best known algorithm requires  $O(n, 2^n)$  operations !



# Q Computing with light Calculating the Permanent - How big is n.2ⁿ?



### Time necessary to collect/simulate 1000 samples on n photons:

n	Number of operations per sample	High Performance Laptop	Nvidia H100	Jean Zay HPC #274 worldwide	1GHz QPU with 80% transmission	1GHz QPU with 90% transmission	Ideal QPU
4	64	milliseconds	milliseconds	milliseconds	milliseconds	milliseconds	milliseconds
1 0	10240	seconds	milliseconds	milliseconds	milliseconds	milliseconds	milliseconds
2 0	21M	minutes	seconds	milliseconds	milliseconds	milliseconds	milliseconds
3 0	32B	days	hours	<b>1</b> s	milliseconds	milliseconds	milliseconds
4 8	3.1015	months	weeks	100s	milliseconds	milliseconds	milliseconds
8 0	10 ²⁶	-	-	95 years	1 hour	1 second	milliseconds

# ${\ensuremath{\mathbf{Q}}}$ What about qubits and GBQC?



- LOQC computing space is Fock space which includes the Hilbert space - the gate-based quantum computing model
- Size of the Fock space depends on the number of modes and the number of photons
- ${\, }^{\bullet}$  For dual-rail encoding size of the space grows as  $4^n$
- No decoherence "noise" is at the source
- Simulation less demanding on memory but far more demanding on computing

# Q Putting everything together

00:00:00



OVH cloud datacenter, Croix – France, 1st delivered QC system, November 2023.



# QUANDELA

About Quandela

101 Photonic Quantum Computing : how to build your own Quantum

Computer!

• The Software Stack – exQalibur, MosaiqOS, Perceval and the Quantum

# Q The Software Stack Developing solutions for real-life problems





# Q The Software Stack Developing solutions for real-life problems



### Quandela Cloud

Quandela Quantum Toolbox

Perceval

# Q Why and What is Perceval? A French legend...

# PERCEVAL

### Perceval, the story of the Grail (1180)

Perceval is the youngest of the king Arthur knights and is the only knight to have encountered the "Grail" described as a **super bright source of light**.



Chrétien de Troyes (1180)

Une si granz clartez i vint Qu'ausi perdirent les chandoiles Lor clarté come les estoiles Quant li solauz lieve ou la lune.

### Perceval (2022)

# A Software Platform for **Discrete Variable** Photonic Quantum Computing



1400110 Getting started with Perceva

Detailed walkthrough

#### **ADVANCED TUTORIALS**

Error-tolerant BS-based circuit

LOv rewriting rules

Simulation of non-unitary components

Decomposing gate-based circuits: qiskit and myQLM

Remote computing on Quandela Cloud

https:// Graph States generation and display

Tomography of a CNOT Gate Quandela / Perceval

#### **BOSON SAMPLING Boson Sampling**

Q Perceval 1² main - 12 6 br ericbrts PCVL-397 Fix iii .github benchmark 🖿 data docs perceva scripts tests 🗋 .gitignore .pre-commit-config. CODE OF CONDUCT CONTRIBUTING.md

STANDARD QUANTUM ALGORITHMS Shor's algorithm implementation 2-mode Grover's search algorithm

MPS techniques for Boson Sampling

#### VARIATIONAL QUANTUM ALGORITHMS

Differential equation resolution Variational Quantum Eigensolver Reinforcement learning

The shortest path problem using QUBO

Perce **OUANTUM WALK** 

#### Phot[∃] Two-particle bosonic-fermionic quantum walk



🆀 / Two-particle bosonic-fermionic quantum walk

•

3

5

### **Two-particle bosonic-fermionic quantum walk**

We provide an implementation of the two-particle guantum walk. The aim is to reproduce the results of "Two-particle bosonic-fermionic guantum walk via integrated photonics" by L. Sansoni et al. [1] with Perceval.

### [5]: # imports import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import perceval as pcvl from perceval.components.unitary_components import BS from perceval.backends import NaiveBackend from perceval.simulators import Simulator from perceval.components import Source ## Use the symbolic skin for display from perceval.rendering.circuit import DisplayConfig, SymbSkin DisplayConfig.select_skin(SymbSkin) Building an array of beam splitters The dynamics of a quantum walk can be achieved by an array of beam splitters (BSs) as in figure. Here we reproduce a four steps quantum walk, we highlight the difference between the optical spatial modes (in red) and the walk positions (in blue). 0 2







PERCEVAL

O Edit on GitHub

Une si granz clartez i vint Qu'ausi perdirent les chandoiles

Lor clarté come les estoiles

Perceval, the Story of the Grail -Chrétien de Troyes (circa 1180)

both the ideal and realistic behaviours

Quant li solauz lieve ou la lune

#### View page source

The part of the pa

# Q Main concepts in Perceval Hello World!



#### [1]: import perceval as pcvl

#### [2]: help(pcvl)

Help on package perceval:

#### NAME

perceval

#### DESCRIPTION

Through a simple object-oriented python API, Perceval provides tools for building a circuit with linear optics components, defining single-photon sources and their error model, manipulating Fock states, running simulations, reproducing published experimental papers results and experimenting a new generation of quantum algorithms.

It is interfaced with the available QPUs on <a href="https://cloud.quandela.com">https://cloud.quandela.com</a>, so it is possible to run computations on an actual photonic computer.

Perceval aims to be a companion tool for developing discrete-variable photonic circuits

- while simulating their design, modeling their ideal and real-life behaviour;
- and proposing a normalized interface to control photonic quantum computers;
- while using powerful simulation backends to get state-of-the-art simulation;
- and also allowing direct access to the QPUs of Quandela.

See also:

- Perceval user documentation: https://perceval.quandela.net/docs/
- Quandela cloud documentation: https://cloud.quandela.com/webide/documentation (requires a free account to access)





# Q Main concepts in Perceval Hello World!



### PACKAGE CONTENTS algorithm (package) backends (package) components (package)

components (package) converters (package) rendering (package) runtime (package) serialization (package) simulators (package) utils (package) No need to know about these packages, most of the useful objects are available in main namespace!

### VERSION

0.9.1.post33+2023.8.22



Check the latest stable version, see: https://github.com/Quandela/Perceval/releases

### FILE

/Users/senellart/DEV/PercevalJean/perceval/__init__.py

# Q Main Concepts in Perceval (1) From BasicStates to StateVectors



StateVector 
< BasicState Complex normalized linear Annotated Fock state *combination of* BasicState |0,1,2,3> sqrt(2)/2*|0,1>+sqrt(2)/2*|1,0> |{**P**:**H**},{**P**:**V**}>  $\frac{\sqrt{2}}{2}(|0,1\rangle + |1,0\rangle)$ Annotations are used features – for instance polarization SVDistribution BSDistribution *Probabilistic distribution of BasicState/StateVector (Mixed States)* |0,1>: 0.5, 1,0>: 0.5 Check online pcvl.<mark>SV</mark>D SVDistribution perceval.utils.statevector perceval.utils.statevector help in your Press ← to insert. → to replace Next Tip class SVDistribution(ProbabilityDistribution) IDE! Time-Independent Probabilistic distribution of

StateVectors

You do need to know objects in **bold**, other objects are generally outputs of operators

### BSSamples

Container that stores samples (unannotated BasicState) in a time ordered way

> [|0,1>, |1,0>, |1,0>, |0,1>]

# Q Main Concepts of Perceval (1) From BasicStates to StateVectors

1 photon

2 modes



### perceval.utils.BasicState

```
>>> s=pcvl.BasicState("|0,1>")
>>> print(s[0], s[1])
0 1
>>> print(s.n, s.m, s, list(s))
1 2 |0,1> [0,1]
>>> print(pcvl.BasicState([0,1])*
          pcvl.BasicState([2,3]))
|0,1,2,3>
>>> pcvl.BasicState([0,1])**2
|0,1,0,1>
# Using Annotations
>>> a_bs = pcvl.BasicState("|{P:H},{P:V}>")
>>> print(a_bs[0],a_bs[1], a_bs.clear())
1 1 |1,1>
```

### perceval.utils.StateVector

```
_
```

normalization!

Self-

```
=\frac{\sqrt{5}}{5}(|0,1\rangle-2|1,0\rangle)
```

```
# Sampling from StateVector:
>>> st = pcvl.StateVector([0,1]) +
```

```
pcvl.StateVector([1,0])
```

```
>>> c = Counter()
```

```
>>> for s in st.samples(10):
```

```
... c[s] += 1
```

```
>>> print(", ".join(["%s: %d" % (str(k), v)
```

```
for k,v in c.items()]))
```

```
|0,1>: 3, |1,0>: 7
```

# Q Main Concepts of Perceval (2) Measurement and Mixed State



Measuring a StateVector

```
>>> map_measure_sv = sv.measure(1)
>>> for s, (p, sv) in map_measure_sv.items():
... print(s, p, sv)
|1> 0.9999999999999998
sqrt(2)/2*|0,1>+sqrt(2)/2*|1,0>
```

```
>>> map_measure_sv = sv.measure(2)
>>> for s, (p, sv) in map_measure_sv.items():
... print(s, p, sv)
|0> 0.50000000000001 |1>
|1> 0.5000000000001 |0>
```

perceval.utils.SVDistribution

Used to generate mixed state (probabilistic combination of different StateVector)

state	probability
0,1>	1/2
1/sqrt(2)* 1,0>+1/sqrt(2)* 0,1>	1/4
1,0>	1/4

# Q Main Concepts of Perceval (3) Components and Circuits





# Q Main Concepts of Perceval (4) Backends and Processors



	Appr	Approximate Simulati			
Weak Simulator – provid	le Sampling				
Features Name	CliffordClifford2017	SLOS	Naive	Stepper	MPS
Sampling Efficiency	$\mathrm{O}(n2^n + poly(m,n))$	$\mathrm{O}(mC_n^{n+m-1})$	N/A 1	N/A 1	N/A ¹
Single output Efficiency	N/A	N/A	$\mathrm{O}(n2^n)$	$\mathrm{o}(N_c C_n^{n+m-1})$	$\mathrm{o}(N_c C_n^{n+m-1})$
Full Distribution Efficiency	N/A	$\mathrm{O}(nC_n^{n+m-1})$	$\mathrm{O}(n2^nC_n^{n+m-1})$	$\mathrm{o}(N_c C_n^{n+m-1})$	$\mathrm{o}(N_c C_n^{n+m-1})$
Probability Amplitude	No	Yes	Yes	Yes	Yes
Support Symbolic Computation	Νο	Yes	No	Yes	No
Support of Time-Circuit	No	No	No	Yes	No
Practical Limits	npprox 30	n,m<20	npprox 30		

# Q Main Concepts of Perceval (4) Backends and Processors



### Definition

- A Backend is either a hardware or a specific simulation algorithm
- A Processor is an end-to-end access to a virtual or real QPU
  - Processor models
    - source
    - Backend
    - encoding logic (through ports)
    - optional postprocessing logic (heralds)
  - Processor can be either local (local simulation) or Remote

### Example

- >>> pcvl.pdisplay(cnot, recursive=True)



>>> cnot.with_input(pcvl.LogicalState([1, 0]))

# Q Main Concepts of Perceval (4) Processor example









## Quantum Toolbox going live 5 easy to use algorithms to unlock tens of use-cases



Five toolboxes unlocking tens of use cases Ground state energies of large molecules

 VQE

 chemistry

 Compute ground state of

 BeH2, LiH, H2O, H2 on

 QPU

T

0

0

b

0

X

s e c a s

e

U

**Problem :** Computing ground state of large molecules becomes quickly infeasible

**Solution :** Active space method such as **DMET-VQE** enables to separate a molecule in fragments and compute its ground state energy

Benefits : it will enable more accurate and faster predictions of ground state energies of molecules, which in turn enables to compute force field, binding energies for material design



**Fig.** Energy vs iterations for H2 molecules with given bond length

### Five toolboxes unlocking tens of use cases Predicting behaviour of mechanical structure (dams, nuclear pipes)

0 0 b 0 X

VQE

Compute ground state of

user-chosen Hamiltonian

 $H = \sum h_{\alpha} P_{\alpha} \text{ custom}$ 

S

e

С

а

S

e

Problem : solving PDEs represents >50% of HPC usage of EDF, crucial for mechanical structure, electricity bill is consequential

**Solution :** EDF and Quandela codeveloped a variational algorithm based on an energetic formulation

**Benefits : quantum** algorithm scales better (poly-logarithmic) than classical state-of-the-art. It will reduce energy **consumption** when solving PDEs.





### Five toolboxes unlocking tens of use cases Directing multiple robots in a warehouse without collisions

CVaR-VQE

0

0

b

0

X

S

e

С

а

S

е

VQE variant to solve combinatorial optimisation problem **Problem : multi-agent path finding** notorious **NP-hard problem**. Useful in **logistics**, drones traffic management, etc. Only heuristics to solve it and limited to few agents on medium-size graphs.

**Solution :** Quandela co-developed with a client the energetic formulation of that problem to solve it using CVaR-VQE.

Benefits : as QPU size grows, this algorithm should be able to tackle instances where number of agents, locations and constraints are greater compared to classical solvers



# Five toolboxes unlocking tens of use cases Assigning minimal amount of train units to trips

S

e

С

а

S

e

VQE variant to solve combinatorial optimisation problem

0

0

b

0

X

**Problem :** train-unit assignment problem is a notorious NP-hard problem. Useful in rolling stock circulation phase. Crucial economically no minimize the number of train-units used as one train-unit costs millions of euros.

**Solution :** Quandela co-developed with a partner the energetic formulation of that problem to solve it using CVaR-VQE.

Benefits : solving large instances in short time of TUAP is beyond the reach of classical devices. This approach provides a quantum heuristics sample-efficient and resilient to noise.



### Five toolboxes unlocking tens of use cases Cross-checking chemical description

S

e

С

а

S

e

U

S

а

V

e

X

e Graph isomorphism

sm

Boson sampling based algorithm to check whether two graphs are isomorphic **Problem :** various machine-readable entries for chemical molecules . How to compare those since different basis of representation were used ?

**Solution :** represent each machine-readable entry with keys, then we compare keys, if they don't correspond make simplification on original data to see if keys now match. If so, we detect differences in notations or retrieve chemical experimental information about a dataset.

Benefits : graph isomorphism problem is a really hard problem (NP), with no efficient classical solution. Some heuristics are fast but not exact. Our proposed approach provides a quantum heuristics exploiting hardness of boson sampling that should provide a speed-up when scaling up.



Ref : Merkys, A., Vaitkus, A., Grybauskas, A. *et al.* Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions. *J Cheminform* 15, 25 (2023 . https://doi.org/10.1186/s13321-023-00692-1

### Five toolboxes unlocking tens of use cases Molecular docking

l

S

e

С

a

S

e

U

S

а

V

e

Dense Subgraph identification **Boson sampling** based algorithm to identify 0 dense subgraphs

0

0

b

Х

**Problem :** Molecular docking is **central in structural** molecular biology and computer-assisted drug design. The goal is to predict how a ligand (small molecule) will dock to a protein (large molecule). There is a vast number of ways to do so, which makes is a hard problem for classical computers.

**Solution :** map the ways a ligand docks to a protein (step A on the right panel) to a graph called a binding interaction graph (step D on the right panel). Then using Quandela quantum computer one can find the maximum weighted clique, i.e. the optimal solution for a ligand to dock with a protein.

Benefits : molecular docking has no efficient classical solution. Our proposed approach provides a **quantum heuristics exploiting** hardness of boson sampling that should provide a speed-up when scaling up.



•Ref: Leonardo Banchi et al., Molecular docking with Gaussian Boson Sampling.Sci.

Quandela Cloud



#





### **QUANDELA Cloud**

Making the future of computing brighter

-	Areas -	Join Birtus			Pathers Salus	
	an Vanjare	Annalisati A management and a many	ann A succession ann ann ann ann ann ann ann ann ann a	à source and a source a	Brase Brase Inter Brase Inter December December	
		Artumat O management Artur O hant O hant	Negation D International International D International International	0 wateries w to 0 heater the to 0 heater the top	Based of HT	-
		News				
		Text sufficiency			Annan Ang Annan Ang Annan Ang Ang	
		What is a franches formula 1	an Bhàu			
		What is a Duantum		n med produktion de la traver de		

#### Usage Explorer

Track your team activity, time spent on different platforms, remaining credits, and estimate costs

Log in

Quandela's cloud-based platform gives you access to photonic quantum computing, enabling you to develop and deploy algorithms that optimise solutions.

Get Started for Free

qpu:acherna
QPU Achernar
In Maintenance

sim:slos	
Simulator with SLOS backend	Availability time/day (%)
Available	0%
	66 6 6 6 6 6 6 6 6 6 7 6 7 6 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

QPU Ascella Availability time/day % Simula 100% ••••••• Available 0% Availability time/day % Available Available	qpu.useem		5111.0
Available 0% Avail	QPU Ascella	Availability time/day (%)	Simulate Clifford
0% Avai	Available		backend
50 50 50 50 00 00 00 00 00 00 00 00 00 0		0%	Availa

#### ifford

with )17

Availability time/day (%)



«



#### OVERVIEW

#### **盟 Dashboard**

#### **APPLICATIONS**

- □ Notebook
- 5 Jobs
- Platforms
- ¥ Quantum Toolbox

#### BILLING

() Usage Explorer

#### **USER PROFILE**

- 있 Information
- on Password
- Setting

#### **USER GUIDE**

Cloud Documentation

Awees						14 Platforms View all Ϡ
sim:aws:batch_spot ⓒ System type simulator ♣ Pending jobs 0 ૠ Commands sample_count	sim:aws:batch ♣ System type simulator ♣ Pending jobs ૠ Commands sample_count	0	sim:gpu:mer System type simulator Pending jobs Commands Samples Sample_court	dium s 0	sim:gpu System simulator Pending K Common samples sample	type g jobs 0 ands count
Recent Jobs View all 🤊 Job Name	Platform	Status		0 pend Created time	<b>O</b> ding runnir	9 312 ng completed Duration
sample_count	sim:sampling:v100	• Comp	bleted	24/04/2024 10	):43:32	00:39
sample_count	sim:sampling:v100	• Comp	bleted	24/04/2024 10	):43:31	00:39
sample_count	sim:sampling:v100	• Comp	bleted	23/04/2024 2	1:02:28	00:40
sample_count	sim:sampling:v100	• Comp	pleted	23/04/2024 2	1:02:27	00:39

#### What's new

View all 7

#### Announcement

Replay the Highlights: Quandela Cloud 2.0 Meetup Recap!

17/05/2024 · Read more 7

Announcement

Introducing Quandela Cloud 2.0

06/05/2024 · Read more 7

Announcement

Scheduled Maintenance on Ascella - Important Announcement

11/12/2023 · Read more 7

Announcement

**Replay LOQCathon 2.0 Highlights** 

29/11/2023 · Read more 7

Announcement

The return of the LOQCathon. The 2.0 edition is here to unloqc even more challenges. What you need to know ?

10/10/2023 · Read more 7





OVERVIEW	×	Jobs	5						+ Create New	7 Filter Tolu	imns
留 Dashboard		Manc	ige ai	nd view	the status and results	of all of the jobs you have run on	Quandela's platform.				
APPLICATIONS		Searc	h jobs	s by job	name, token label					∢ Exclude	S
Notebook											
			Act	ion	Process ID 🌲	Job Name 🔶	Token	Priority ≑	Platform	Command	Status
5. Jobs					00764310-4966-43						
Platforms			\$	Ο	<u>b5-bb4f-a168f46c</u> <u>a879</u>	<u>sample_count</u>	<u>quarmen</u>	Low	<u>sim:sampling:v100</u>	sample_count	Cor
光 Quantum Toolbox					00764310-4966-43	main					
BILLING			•	0	<u>b5-bb4f-a168f46c</u> <u>a879</u>	sample_count	<u>quarmen</u>	Low	<u>sim:sampling:v100</u>	sample_count	Cor
() Usage Explorer					<u>e33399b4-e601-44</u>						
USER PROFILE			¢	Ο	<u>0e-94b8-5aa88cc</u> <u>3dc19</u>	<u>sample_count</u>	<u>quarmen</u>	Low	<u>sim:sampling:v100</u>	sample_count	• Cor
2 Information				-	<u>e33399b4-e601-44</u>	main					
o <del>.</del> Password			•	Ο	<u>0e-94b8-5aa88cc</u> <u>3dc19</u>	<u>sample_count</u>	<u>quarmen</u>	Low	<u>sim:sampling:v100</u>	sample_count	Cor
Setting					5510cb53-8213-44						
USER GUIDE			•	O	<u>0c-a0ff-fd7b5feed</u> <u>c83</u>	<u>QPU sampling</u>	<u>class_10_token</u>	Normal	<u>apu:ascella</u>	sample_count	• Cor
🗄 Cloud Documentation 🗸			X		5510cb53-8213-44	main					
			¢	0	<u>0c-a0ff-fd7b5feed</u> <u>c83</u>	My sampling job	<u>class_10_token</u>	Normal	<u>sim:ascella</u>	sample_count	Cor
			•	0	<u>38cb04b2-e382-4</u> 619-8f1d-02c67526	<u>QPU sampling</u>	<u>class_10_token</u>	Normal	<u>qpu:ascella</u>	sample_count	• Cor

#### Quandela Web Api

#### Overview

#### ENDPOINTS

o Get Swagger Json Docs	GET
Auth	>
Job	>
Auth App	>
QuantumToolbox	$\sim$
Ohemistry VQE	POST
Ohemistry VQE Results	GET
Oustom VQE	POST
Oustom VQE Results	GET
🍥 CVar VQE	POST
🎯 CVar VQE Results	GET
🎯 Graph DSI	POST
🎯 Graph DSI Results	GET
🎯 Graph Isomorphism	POST
🎯 Graph Isomorphism Results	GET
VQE	POST
VQE Results	GET

#### SCHEMAS

😭 ApiKey

😭 Atom

😭 Atom1

AuthAppCreate

### **CVar VQE**

https://api.cloud.quandela.com/qt/cvarvqe POST

CVar VQE input API

### Request

> Security: Bearer Auth

Body

max_iterations integer or null >= 1

Default: null

platform_name string Example: sim:ascella

v qubo_matrix array[array] <= 15 items Example: [[31,-500],[-500,32]]

number

Responses

Successful response



401 422

# application/json 🗸

required

Auth

Body

**Token** : 123

#### required

Request Sample: Shell / cURL 🗸 L. curl --request POST \ --url https://api.cloud.quandela.com/qt/cvarvqe --header 'Accept: application/json' \ --header 'Authorization: Bearer 123' \ --header 'Content-Type: application/json' \

--data '{ "max_iterations": null,

"platform_name": "sim:ascella",

"qubo_matrix": [

31,

Send API Request

# Today at Quandela From Ascella to Diadem



#### nature photonics

Article

https://doi.org/10.1038/s41566-024-01403-4

### A versatile single-photon-based quantum computing platform

Accepted: 6 February 2024	
🖲 Ch	eck for updates

Nicolas Maring 1, Andreas Fyrillas 1,3, Mathias Pont^{1,2,3}, Edouard Ivanov^{1,3}, Petr Stepanov¹, Nico Margaria ¹, William Hease¹, Anton Pishchagin¹, Aristide Lemaître ¹, Isabelle Sagnes ², Thi Huong Au¹, Sébastien Boissier ¹, Eric Bertasi¹, Aurélien Baert¹, Mario Valdivia¹, Marie Billard¹, Ozan Acar¹, Alexandre Brieussel¹, Rawad Mezher¹, Stephen C. Wein¹, Alexia Salavrakos ¹ Patrick Sinnott¹, Dario A. Fioretto², Pierre-Emmanuel Emeriau¹, Nadia Belabas ⁰², Shane Mansfield¹, Pascale Senellart ¹ , Jean Senellart ¹ & Niccolo Somaschi 
¹

Quantum computing aims at exploiting quantum phenomena to efficiently perform computations that are unfeasible even for the most powerful classical supercomputers. Among the promising technological approaches, photonic quantum computing offers the advantages of low decoherence, information processing with modest cryogenic requirements, and native integration with classical and quantum networks. So far, quantum computing demonstrations with light have implemented specific tasks with specialized hardware, notably Gaussian boson sampling, which permits the quantum computational advantage to be realized. Here we report a cloud-accessible versatile quantum computing prototype based on single photons. The device comprises a high-efficiency quantum-dot single-photon source feeding a universal linear optical network on a reconfigurable chip for which hardware errors are Ascella

 6 qubits 2022

•Altair - error mitigation 2023 •8 qubits

Bélénos – utility

•12 qubits 2024

2026

·Canopus - logical qubits •24 gubits – w/ cluster states 2025

·Deneb - Adaptive circuits

# Q HPC-scale simulator?

Come and see first-ever demo tomorrow at 11am on AWS booth !

