
Perceval, an open-source 
framework for photonic 
quantum computing





• 101 Photonic Quantum Computing : how to build your own Quantum 

Computer!

• The Software Stack – exQalibur, MosaiqOS, Perceval and the Quantum 

Toolbox



Single Photon Source

2 µm

OVH cloud datacenter, Croix – France, 1st delivered QC system, November 2023.



• About Quandela

• The Software Stack – exQalibur, MosaiqOS, Perceval and the Quantum 

Toolbox



Semiconduc
tor

Optics / PICs 
/ Electronics

Compilation

Algorithms 
& Protocols

Quantum as a Service

Research Community

MOSAIQ on-premise

Algorithm toolbox

Software dev. & Computer science 

Quantum computing

Systems integration / engineering

Semiconductor physics
2023: 1 QC delivered

2024: 1 QC delivered + 3 in preparation

#8 projects today + 12 in the pipe
Consulting Service

Open Source framework
#2000s users
4 Hackathons

1 QPU live since Nov 2022
GPU-boosted simulator

600+ Active users on Quandela Cloud

Proprietary cleanroom

Production facility  + QC cloud farm

#20 scientists + #6 patents

#10 experts + internal cloud dev. in 2023

© QUANDELA 2024



© QUANDELA 2024

Manufacturing

Adaptability

Hybridization 

Algorithms 

Capability to build and deliver several industry grade QCs / year

Low cooling constraints, ease-of-integration in current datacenters, energy 
efficient

Ability to be connected to classical CPU, GPUs, and integrated into current 
infrastructures (computing, networks and communication)

Ready-to-use optimized primitives 

Photonics, an optimal platform for universal QC

Single Photon is the only particle able to transport quantum state between 
multiple computersScalability 



Matter Qubits: Ions, Superconductors, Cold Atoms… Photonic Qubits

Physical QuBits

ONE-QUBIT GATE

1 PHOTON IN 2 SPATIAL MODES (DUAL RAIL ENCODING) 
Control Signals IN

Read-OUT Signals

Qubits are in 
the QPU

Flying Qubits

1 2

Digital Quantum Computing Approaches

Quandela exploits the efficient manipulation of optical qubits but tackle probabilistic nature of gates 
with a matter-based qubit generator

… …

Photon

SEQUENCE OF N-QUBIT GATES

QPU

1 2&

Highly EFFICIENT 2-qubit GATES (deterministic)

BUT Qubits have a physical size à Manufacturability roadblocks

BUT Each qubit undergoes DECOHERENCE à errors with #qubits

+ Increase Qubit# with fix hardware size 

ROBUST qubits (no decoherence)

MANIPULATION at room temperature with standard optics

+
+
+

© QUANDELA 2024



• Light is an electromagnetic wave described by
Maxwell’s equations
• A single photon is the quantum of light. It is an indivisible particle-like entity 

behaving as both a particle and a wave.

• The energy of a single photon is: 𝐸 = !"
# . For visible light: 𝑬 < 𝟏𝒂𝑱	(𝟏𝟎$𝟏𝟖𝑱)

• A single photon will only interfere with another single 
photon at the same position, wavelength, polarization.

à Such photons are called indistinguishable
• Single Photons can be deterministically
generated using quantum dots

Computing with light

Quandela Photons

925nm



Superposition Interference – Mach-Zehnder interferometer

Quantum Computing with Light



• As a particle of light, a photon will have the different properties:
• Speed of a single photon depends on the refractive index of a material – change of speed can 

be used to change phase of a single photon (practically we can use change of temperature)
• When a single photon hits a new material boundary, it can be refracted or reflected
• A single photon can be absorbed by almost any material on its way (photon loss)

• Common passive optical elements are: beamsplitters, 
polarizers, mirrors, etc…which follows linear
equations (linear optics)
• Single photons can be detected with high accuracy 

with Superconducting Nanowire Single-Photon
Detector (SNSPD)

Computing with light



Computing with light



Computing with light



• Linear optics transformations can be represented by unitary matrices

• A universal interferometer can implement any
unitary transformation

Computing with light

𝐸!
𝐸"

= 𝑅𝑒#$!" 𝑇𝑒#$#"
𝑇𝑒#$!$ 𝑅𝑒#$#$

𝐸%
𝐸&

𝐸!
𝐸"

= 𝑒#' 0
0 1

𝐸%
𝐸&

𝐸%

𝐸&

𝐸!

𝐸"

𝐸%

𝐸&

𝐸!

𝐸"

The beam-splitter: The phase-shifter:

𝑅( + 𝑇( = 1

(more generally any 2-mode unitary is a beam-splitter) (more generally any 1-mode unitary is a phase-shifter)



• Input/Output State is represented by a Fock state

• Quantum State is given by: 
𝑠 = ∑/ 𝛼/|𝑠/⟩ where 𝛼/ is the probability amplitude of |𝑠/⟩

• Fock space size is 𝑀0 =
𝑛 +𝑚 − 1
𝑚 − 1 = 012$3 !

0! 2$3 ! ~4
0 (for	m=2n)

• Probability amplitude of a specific circuit output given a specific unitary is 
given by Permanent of the scattering matrix:

𝑡|𝑈|𝑠 =
𝑝𝑒𝑟𝑚 𝑈 ⟩|7 , ⟩|9

𝑠3!, … 𝑠2! 𝑡3!, … 𝑡2!

Computing with light

|𝑠⟩ = |𝑛!, 𝑛", 𝑛#, 𝑛$⟩

𝑛)

𝑛*

𝑛(

𝑛+

Modes

Heurtel, Nicolas, et al. "Strong simulation of linear optical processes." Computer Physics Communications 291 (2023): 108848.



What does a Photonic QPU can do The Permanent

Computing with light

• A QPU performs sampling tasks
• Sampling distribution is driven 

by a mathematical operation on 
a matrix called “Permanent”

𝑝𝑒𝑟𝑚 𝑈 = '
'∈)(+)

(
-./

+

𝑢-,'(-)

• Calculating the Permanent is 
#P-hard !

1 2 3
a b c
d e f
g h i

1 3 2
a c b
d f e
g i h

2 1 3
b a c
e d f
h g i

2 3 1
b c a
e f d
h i g

3 1 2
c a b
f d e
i g h

3 2 1
c b a
f e d
i h g

𝑎𝑒𝑖 + 𝑎𝑓ℎ + 𝑏𝑑𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ + 𝑐𝑒𝑔 =

𝑎(𝑒𝑖 + 𝑓ℎ) + 𝑏(𝑑𝑖 + 𝑓𝑔) + 𝑐(𝑑ℎ + 𝑒𝑔)

(17 operations)

(14 operations)

𝑶(𝒏. 𝟐𝒏)Best known algorithm requires operations !

With some optimizations:



n Number of 
operations 
per sample

High 
Performance 

Laptop

Nvidia H100 Jean Zay HPC
#274 

worldwide

1GHz QPU 
with 80% 

transmission

1GHz QPU 
with 90% 

transmission

Ideal QPU

4 64 milliseconds milliseconds milliseconds milliseconds milliseconds milliseconds

1
0

10240 seconds milliseconds milliseconds milliseconds milliseconds milliseconds

2
0

21M minutes seconds milliseconds milliseconds milliseconds milliseconds

3
0

32B days hours 1s milliseconds milliseconds milliseconds

4
8

3.1015 months weeks 100s milliseconds milliseconds milliseconds

8
0

1026 - - 95 years 1 hour 1 second milliseconds

Computing with light

Time necessary to collect/simulate 1000 samples on n photons:



• LOQC computing space is Fock space which includes the 
Hilbert space - the gate-based quantum computing model
• Size of the Fock space depends on the number of modes and 

the number of photons
• For dual-rail encoding size of the space grows as 4!

• No decoherence – “noise” is at the source
• Simulation less demanding on memory but far more 

demanding on computing

What about qubits and GBQC?



Putting everything together

OVH cloud datacenter, Croix – France, 1st delivered QC system, November 2023.



• About Quandela

• 101 Photonic Quantum Computing : how to build your own Quantum 

Computer!



The Software Stack

exQalibur MosaiqOS

Perceval

myQLM Graphix

Quandela Quantum Toolbox

Optimized Simulation and Compilation Hardware Control and Transpilation

Quandela Jousting Arena

Quandela Cloud

… Connectors



The Software Stack

Perceval

Quandela Quantum Toolbox

Quandela Cloud



Perceval, the story of the Grail (1180) Perceval (2022)

Why and What is Perceval?

Chrétien de Troyes (1180)

A Software Platform for Discrete Variable Photonic 
Quantum Computing

Perceval is the youngest of 
the king Arthur knights and 
is the only knight to have 
encountered the “Grail” 
described as a super bright 
source of light.



Perceval entry points

https://github.com/Quandela/Perceval

https://perceval.quandela.net

https://perceval.quandela.net/forum/https://quantum-journal.org/papers/q-2023-02-21-931/pdf/



Main concepts in Perceval

💡
[pcvl] is a good 
short phonetic 
Perceval namespace 
shortcut 

💡 Read the doc !



Main concepts in Perceval

PACKAGE CONTENTS
algorithm (package)
backends (package)
components (package)
converters (package)
rendering (package)
runtime (package)
serialization (package)
simulators (package)
utils (package)

[…]

VERSION
0.9.1.post33+2023.8.22

FILE
/Users/senellart/DEV/PercevalJean/perceval/__init__.py

💡 No need to know about these 
packages, most of the useful objects 
are available in main namespace!

💡
Check the latest stable version, see:
https://github.com/Quandela/Perceval/releases

https://github.com/Quandela/Perceval/releases


Main Concepts in Perceval (1)

BasicStateStateVector

SVDistribution BSDistribution

BSSamples

💡
You do need to know 
objects in bold, 
other objects are 
generally outputs of 
operators

💡
Check online 
help in your 
IDE!

|0,1,2,3>

|{P:H},{P:V}>
sqrt(2)/2*|0,1>+sqrt(2)/2*|1,0>

2
2
(|0,1⟩ + |1,0⟩)

Complex normalized linear 
combination of BasicState

Annotated Fock state

Probabilistic distribution of BasicState/StateVector (Mixed States)
{

|0,1>: 0.5,
|1,0>: 0.5

}

Container that stores 
samples (unannotated 
BasicState) in a time 

ordered way

[|0,1>,
 |1,0>,
 |1,0>,
 |0,1>]

💡
Annotations are used 
for “distinguishable” 
features – for instance 
polarization



>>> s=pcvl.BasicState("|0,1>")
>>> print(s[0], s[1])
0 1

>>> print(s.n, s.m, s, list(s))
1 2 |0,1> [0,1]

>>> print(pcvl.BasicState([0,1])*
          pcvl.BasicState([2,3]))

|0,1,2,3>

>>> pcvl.BasicState([0,1])**2
|0,1,0,1>

# Using Annotations

>>> a_bs = pcvl.BasicState("|{P:H},{P:V}>")

>>> print(a_bs[0],a_bs[1], a_bs.clear())

1 1 |1,1>

>>> print(pcvl.BasicState([0,1])+
pcvl.BasicState([1,0]))

sqrt(2)/2*|0,1>+sqrt(2)/2*|1,0>

>>> print(pcvl.StateVector([0,1])-
2*pcvl.StateVector([2,3]))

sqrt(5)/5*|0,1>-2*sqrt(5)/5*|1,0>

# Sampling from StateVector:

>>> st = pcvl.StateVector([0,1]) +
  pcvl.StateVector([1,0]) 

>>> c = Counter() 
>>> for s in st.samples(10): 
...     c[s] += 1 
>>> print(", ".join(["%s: %d" % (str(k), v)
              for k,v in c.items()])) 

|0,1>: 3, |1,0>: 7

perceval.utils.BasicState perceval.utils.StateVector

Main Concepts of Perceval (1)

=
5
5
(|0,1⟩ − 2|1,0⟩)

1 photon
2 modes

💡
Self-
normalization!



>>> sv = pcvl.StateVector("|0,1,1>")
         +pcvl.StateVector("|1,1,0>")

>>> map_measure_sv = sv.measure(1) 
>>> for s, (p, sv) in map_measure_sv.items(): 
...              print(s, p, sv)
|1> 0.9999999999999998 
sqrt(2)/2*|0,1>+sqrt(2)/2*|1,0>

>>> map_measure_sv = sv.measure(2) 
>>> for s, (p, sv) in map_measure_sv.items(): 
...              print(s, p, sv)
|0> 0.5000000000000001 |1>

|1> 0.5000000000000001 |0>

Used to generate mixed state 
(probabilistic combination of different 
StateVector)

Measuring a StateVector perceval.utils.SVDistribution

Main Concepts of Perceval (2)



>>> bsps = comp.BS()
  .add(0, comp.PS(np.pi/2)
>>> c = pcvl.Circuit(3)
           .add(0, bsps).add(1, bsps)
>>> pcvl.pdisplay(c)

⎡sqrt(2)/2  sqrt(2)*I/2  0          ⎤
⎢I/2        1/2          sqrt(2)*I/2⎥
⎣-1/2       I/2          sqrt(2)/2  ⎦

Main Concepts of Perceval (3)

ACircuit

Circuit

BS
PS
WP HWP

QWPPR
Unitary

PERM
PBS

TD
LC

pcvl.components.unitary_components

.non_unitary_components



Main Concepts of Perceval (4)

Weak Simulator – provide Sampling

Strong Simulator – provide probability amplitude Approximate Simulation



• A Backend is either a hardware 
or a specific simulation 
algorithm

• A Processor is an end-to-end 
access to a virtual or real QPU
• Processor models

• source
• Backend
• encoding logic (through ports)
• optional postprocessing logic 

(heralds)

• Processor can be either local 
(local simulation) or Remote

Definition Example

Main Concepts of Perceval (4)

>>> cnot = catalog['postprocessed cnot’]
                            .build_processor()
>>> pcvl.pdisplay(cnot, recursive=True)

>>> cnot.with_input(pcvl.LogicalState([1, 0]))



Main Concepts of Perceval (4)

💡 heralds💡 heralds

💡
Logical 
ports

💡
Logical 
ports



Let us forget about code !

Compute ground state of 
BeH, LiH, H2O, H2 on QPU

Compute ground state of 
user-chosen Hamiltonian

VQE variant to solve 
combinatorial 

optimisation problem

Boson sampling based
algorithm to check 
whether two graphs are 
isomorphic

Toolboxes

VQE 
chemistry

VQE 
custom CVaR-VQE Graph 

isomorphism

Dense 
Subgraph
identification

Boson sampling based
algorithm to identify 
dense subgraphs

𝐻 = ∑ℎ!𝑃!



5 easy to use algorithms to unlock tens of use-cases

Compute ground state of 
BeH2, LiH, H2O, H2 on 

QPU

Battery design :

- Compute force field on 
molecules
- Compute binding 
energies

Compute ground state of 
user-chosen Hamiltonian

Try to compute new 
molecules ground states 
on a photonic QPU

Solve differential 
equation using energetic 
formulation

VQE variant to solve 
combinatorial 

optimisation problem

Multi-agent path finding: 
For logistics issues in 
warehouses

Train-unit assignment 
problem: to minimize 
number of carriages

Boson sampling based
algorithm to check 
whether two graphs are 
isomorphic

Fault detection in chip design :
defect-free chip should be 
isomorphic to graph of perfect 
chip

Cross-checking databases in 
cheminformatics

Drug design : Docking problem 
i.e. finding optimal 
configuration for ligand-
receptor couple

Use-cases

Toolboxes

VQE 
chemistry

VQE 
custom CVaR-VQE Graph 

isomorphism

Dense 
Subgraph
identification

Boson sampling based 
algorithm to identify 
dense subgraphs

𝐻 = ∑ℎ!𝑃!



Ground state energies of large molecules

T
o
o
l
b
o
x

U
s
e

c
a
s
e

Problem : Computing ground state of
large molecules becomes quickly
infeasible

Solution : Active space method such as
DMET-VQE enables to separate a
molecule in fragments and compute its
ground state energy

Benefits : it will enable more accurate 
and faster predictions of ground state 
energies of molecules, which in turn 

enables to compute force field, binding 
energies for  material design

Compute ground state of 
BeH2, LiH, H2O, H2 on 

QPU

VQE 
chemistry

Fig. Energy vs iterations for H2 molecules with 
given bond length



Predicting behaviour of mechanical structure (dams, nuclear pipes)

T
o
o
l
b
o
x

U
s
e

c
a
s
e

Compute ground state of 
user-chosen Hamiltonian

VQE 
custom𝐻 = ∑ℎ!𝑃!

Problem : solving PDEs represents >50%
of HPC usage of EDF, crucial for
mechanical structure, electricity bill is
consequential

Solution : EDF and Quandela co-
developed a variational algorithm based
on an energetic formulation

Benefits : quantum algorithm scales 
better (poly-logarithmic) than classical 
state-of-the-art. It will reduce energy 

consumption when solving PDEs.



Directing multiple robots in a warehouse without collisions

T
o
o
l
b
o
x

U
s
e

c
a
s
e

Problem : multi-agent path finding
notorious NP-hard problem. Useful in
logistics, drones traffic management, etc.
Only heuristics to solve it and limited to
few agents on medium-size graphs.

Solution : Quandela co-developed with a
client the energetic formulation of that
problem to solve it using CVaR-VQE.

Benefits : as QPU size grows, this 
algorithm should be able to tackle 

instances where number of agents, 
locations and constraints are greater 

compared to classical solvers

VQE variant to solve 
combinatorial 

optimisation problem

CVaR-VQE



Assigning minimal amount of train units to trips

T
o
o
l
b
o
x

U
s
e

c
a
s
e

Problem : train-unit assignment problem
is a notorious NP-hard problem. Useful in
rolling stock circulation phase. Crucial
economically no minimize the number of
train-units used as one train-unit costs
millions of euros.

Solution : Quandela co-developed with a
partner the energetic formulation of that
problem to solve it using CVaR-VQE.

Benefits : solving large instances in short 
time of TUAP is beyond the reach of 

classical devices. This approach provides 
a quantum heuristics sample-efficient 

and resilient to noise. 

VQE variant to solve 
combinatorial 

optimisation problem

CVaR-VQE



Cross-checking chemical description

T
o
o
l
b
o
x

I
l
l
u
s
t
r
a
t
i
v
e

U
s
e

c
a
s
e

Problem : various machine-readable
entries for chemical molecules . How to
compare those since different basis of
representation were used ?

Solution : represent each machine-readable
entry with keys, then we compare keys, if they
don’t correspond make simplification on
original data to see if keys now match. If so, we
detect differences in notations or retrieve
chemical experimental information about a
dataset.

Benefits : graph isomorphism problem is a really 
hard problem (NP), with no efficient classical 

solution. Some heuristics are fast but not exact. 
Our proposed approach provides a quantum 

heuristics exploiting hardness of boson 
sampling that should provide a speed-up when 

scaling up.

Ref : Merkys, A., Vaitkus, A., Grybauskas, A. et al. Graph isomorphism-based algorithm for cross-checking chemical and 
crystallographic descriptions. J Cheminform 15, 25 (2023). https://doi.org/10.1186/s13321-023-00692-1

Boson sampling based
algorithm to check 
whether two graphs are 
isomorphic

Graph 
isomorphism



Molecular docking

T
o
o
l
b
o
x

I
l
l
u
s
t
r
a
t
i
v
e

U
s
e

c
a
s
e

Problem : Molecular docking is central in structural
molecular biology and computer-assisted drug
design. The goal is to predict how a ligand (small
molecule) will dock to a protein (large molecule).
There is a vast number of ways to do so, which
makes is a hard problem for classical computers.

Solution : map the ways a ligand docks to a
protein (step A on the right panel) to a graph
called a binding interaction graph (step D on the
right panel). Then using Quandela quantum
computer one can find the maximum weighted
clique, i.e. the optimal solution for a ligand to
dock with a protein.

Benefits : molecular docking has no efficient 
classical solution. Our proposed approach 
provides a quantum heuristics exploiting 
hardness of boson sampling that should 

provide a speed-up when scaling up.

•Ref : Leonardo Banchi et al., Molecular docking with Gaussian Boson Sampling.Sci. 
Adv.6,eaax1950(2020).DOI:10.1126/sciadv.aax1950

Dense 
Subgraph
identification

Boson sampling based
algorithm to identify 
dense subgraphs



Quandela Cloud

https://cloud.quandela.com





46



47



https://cloud.quandela.com

Today at Quandela

2022
•Ascella
•6 qubits

2023
•Altair – error mitigation
•8 qubits

2024
•Bélénos – utility 
•12 qubits

2025
•Canopus - logical qubits
•24 qubits – w/ cluster states

2026
•Deneb - Adaptive circuits



HPC-scale simulator?

49

Come and see first-ever demo tomorrow at 11am on AWS booth !




