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~30 people (researchers, PhDs)
Dedicated to open research
13000+ citations

58 open-sourced codebases
4000+ stars on github

10’s of academic partnerships
across France and Europe
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From ADAS* to AD**

Spectrum of Vehicle Automatization

Driving Assistance

= Blind spot detection
n Cruise control

Front-to-rear crashes

Forward collision warning 1 56% with injuries

+
autobrake

Lane departure warning 1 21 % Injury crashes

*ADAS = Advanced Driving Assitance Systems  **AD = Autonomous driving

Valeo
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https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf

From ADAS* to AD**

Spectrum of Vehicle Automatization

Driving Assistance Limited Self-Driving Full Self-Driving

m  Blind spot detection m  Parking valet m  Robot taxis

m  Cruise control m  Highway pilot m  Delivery vehicle
.

Towards safer, more efficient and more available mobility

*ADAS = Advanced Driving Assitance Systems  **AD = Autonomous driving
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Core need of driving: representing the environment

Scene geometry, dynamic, semantic...

Road Semantics

Road-side directives (TFL/TSR),

on-road directives (text, arrows, '
— stop-line, crosswalk) and their oL P .LY
Driving Path (DP) association " : "
. A
| v
Road Boundaries ‘
Any delimiter/ 3D structure/
semantics of the drivable area, both |
Jategally (FS) and longitudinally |
- (general objects/debris) |
/ \ Eitm
es detection of any / \
user, and actonable Road Geometry
of gesture
Jnving pa' explic
partially f Uy Jicated, the
Adapted from https://youtu.be/HPWGFzqd7pl?t=1046 Valeo May 2024 | 5



Core need of driving: representing the environment

How ?

Ontology

Adapted from https://youtu.be/fKXztwtXaGo

Explicitly represent everything
Detection, Segmentation
Powered by human annotation

What is not defined does not exist
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Importance of learning at scale

The world is full of edge-cases

AT TR P
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Lea rning at Sca Ie - Fou ndation mOdeI Bommasani et al., On the Opportunities and Risks of Foundation Models, arxiv 2021
A little bit of vocabulary definition =

Question
Answering

What do we call Foundation model?

Data entimen
| J ’_ ,s A:\alysi:
Training Text \J -
» & el )
i - T e & b e S
e Expensive to train » one-shot e TR I d;-‘ adaptation P
i speech V! w2 " oundation " image
e Trained on unlabelled (or weakly-labelled) data ’ / 9 o S °“"?‘°"‘“9\w‘
" Structured =/
o Huge/Large scale = | =
([ ] Blg mOdel (> -IB ?) 3DSignals¢ ,,-‘A‘ Recognltlon

Instruction
Following ..

W

Usage

e General purpose Al — can be applied to a wide range of use

cases
Easy to derive another model more specialized

Training-free / zero-shot / cheap specialization
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Foundational Models Strategies

Distillation or Self-supervision (non-exclusive)

Distillation from third-party models
(DINO, CLIP, LLaVa etc.)

+ Less costly
+ Piggy back on GAFAM'’s monstrous budgets

Limited training on driving data ?
Ownership? IP ?
Bias control ?

Learning from scratch with self-supervision

+ Entirely learned for the automotive domain
Adaptable to new domains (record+train)
+ Total control and ownership

+

More costly
Require robust data and infrastructure

strategies

Valeo May 2024 | 9



Distillation - Open-vocabulary, aligning text and images

CLIP : Learning Transferable Visual Models From Natural Language Supervision

Pepper the I
aussie pup m Contrastive learning

o Contrast positive/negative pairs
m Trained using 400 millions (image /
text) pairs extracted from internet
o Meta-data

o Legends

Image
Encoder

m Align perception <-> language

IN'T2

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021 May 2024 | 10



Distillation - Geometry + CLIP
POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images (NeurlPS 2023) [§&ai}

OUTPUT:
< 3D voxel field with:
- occupancy
- open-vocabulary
features

INPUT:

surround
-view
images

TASK #2: text-driven 3D retrieval from cameras

+class names Qe et {:imilarity

[Qﬁl road, car, terrain,]

vegetation, building, ...

" »(Q@a “Black hatchback” |- -
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Distillation - Other works from the team
LiDAR, Camera, Camera+LiDAR

OccFeat
Self-supervised Occupancy Feature Prediction for Pretraining BEV Seg. Nets
(WAD CVPR 2024) [v.ai]

2D image features
Reference distillation feature Oty
distillation

Cosine

3 T
- 2
Y= "\"0" 2 '/,/ similarty
network @ T4 7 e

K2

T g

Vs o Occupancy
reconstruction

L]
:) BCE loss
L]

ScalLR
Three Pillars improving Vision Foundation Model Distillation for Lidar
(CVPR 2024) [v:ai]

2D-3D
alignment
objective

J

3D feature map

2D feature map

Explicit geometry as base
3D or BEV occupancy
Features from foundation model

No human annotation
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How to learn foundational models for AD ?

The challenges

1. What data ?

2. What network architecture ?
3. What supervision ?
yA

. How to scale ?
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1/ Source of publicly available data

Heterogeneous situation

Includes rare events

ONCE + Nuplan OpenDV-Youtube
(calibrated multi-cam + LiDAR) (only non-calib. front-cam)
~120h of driving data @10Hz ~1700h of driving data @10Hz

i

=




2/ What network architecture ?

Transformer offer the most flexibility

Task dependent
Query

Z ]
Z e Transformer g Transformer
3] Encoder — Decoder

Scene representation

Ray
origin + direction

'

Want to learn more ?
Bartoccioni et al., LaRa: Latents and Rays for Multi-Camera Bird's-Eye-View Semantic Segmentation, CoRL 2022 [Nigil

Dehghani et al., Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution
Jaegle et al, Perceiver 10: A General Architecture for Structured Inputs & Outputs
Sajjadi et al., Object Scene Representation Transformer
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3/ What supervision ?

Self-supervision at scale

Predict masked from the Predict future from the

Can be used to learn good transferable features Can be used to learn good transferable features +
a BERT s V-JEPA predictive capabilities (forecasting, planning, control)
= DINO = UniPAD = GPT

m World models (e.g., GAIA-1, VIDAR, LOPR, Copilot4D)

VIiDAR Pre-training © Multi-view @ Temporal

T g g ; | 5 g 8 i L o ’ . . . Geomet Modelling
‘ ” e s Bty : ! ! “ “ u Visual Point Could Forecasting ‘ by
i 5 ] — e — i Iy e
il s PeBsgels 3 2 ; : ; VIDAR Model £E51 ‘ i "
i i 3 Multi-frame Multi-view !mage§ I i-frame Point Clouds

Target y Loss
\ encoder
y < Stop-grad L J

Adapted from: NYU Deep Learning Week 7 — Lecture: Energy based models and self supervised learning
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https://www.youtube.com/watch?v=PHxKk5Y5ayc&list=PLderfcX9H9MoBP5iPKQ4btxfgzHjv7UJe&index=4

3/ What supervision ? Focus on world model

Current experimentation using principles from GPT

Sensors

Language

D

Past observations Predicted Future

Ego action

) World
Tokenizer Model Decoder

Valeo



3/ What supervision ? Focus on world model

Action-conditioned predictive model

Tokens
(e.g., discrete patches)

Frame #1

T‘*I__ ]

P 3 B e Image [
—» | tokenizer | Frame #3

]

|
World |

: or

Input video Frame #2 Model 1
]

Action
tokenizer

Input actions

Loss is difference
between pred.
and real

Hu et al., GAIA-1: A Generative World Model for Autonomous Driving
Zhang et al., Copilot4D: Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion May 2024 | 18



3/ What supervision ? Focus on world model

Fine-tune on any end task

Tokens
(e.g., discrete patches)

Frame #1
e =
P 3 B e Image [
‘ —» | tokenizer __
]
1 Q
| o)
Input video Frame #2 Wocrjldl 8
E— Mode Q
. — b
Action 1
' tokenizer __
n 1
Input actions —
Valeo

May 2024 | 19



4/ How to scale ? =» Scaling laws

Predictability in the cost/performance trade-off

A functional approximation
ompress at : and a stochastic approximation
trainjng tim

ake the model sm
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m Given a computational budget
what's my best use (model size

—_— et : and data) ?

103° m At fixed TOPs how much data do |

Model size need ?
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Hoffmann et al,, Training Compute-Optimal Large Language Models, NeurlPS 2022



4/ How to scale ? » Maximal Update Parametrization (cregvangetal)

Efficient hyper parameter search + zero-shot HPs transfer
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Standard Parametrization Maximal Update Parametrization

tensor.abs().mean()

Loss vs learning rate
w/ & w/o muP

256
512
1024
2048

4096 4 \J/

8192 optimum shifts optimum stable =p-

Training Loss
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Conclusion

How ?

Distillation From Scratch

[ Explicit geometry as base [ Everything is learned
(] 3D or BEV occupancy [ High dimensional vectors
[ Features from foundation model [ Most flexible
Valeo May 2024 | 22



Recap
What's next ?

Distillation

Explicit geometry as base
3D or BEV occupancy
Features from foundation
model

More efficient

Less control

flexible
Higher cost

Final notes

m Not possible without
JZ and Adastra

m World models are a
promising avenue
for robotics

m Need to study more
their behaviors

m Extension to
multimodality and
generalisation to
different rigs

Everything is learned
More control, More
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