

Réalité virtuelle pour l'entrainement sportif : enjeux et défis

Franck Multon MimeTIC – Inria Rennes

Overview

01 - Context

02 - Motivations & Expectations in using VR for human performance

- **03 VR training projects**
- 04 Conclusion

Context

Human performance analysis, understanding and training

Promise of Virtual Reality

Controlled/ecological trade-off Standardisation Control of multisensorial feedback Secured environment Motivation/gamification

Introduce technological challenges

VR Interaction loop

Ínría

Motivations & Expectations in using VR for human performance

Context

Dissemination of VR in the wide public audience

Various

- Applications
- Motivations
- VR experiences
- Requirements

Dance battle in VR-Chat (RoadToVR)

Better understand how and why VR is used

→ Survey on the Dance VR community

- **1. Motivations for using VR for dancing?**
- 2. Features do users like and dislike?
- 3. Guidelines for designing user-centered dance VR applications?

Results – « professionals » (n = 11)

Prefer their avatars to be a different from themselves Feel more confident when dancing in VR compared to the real world Technical limitations: headset, latency, body tracking

Acceptance by coaches of immersive virtual reality for improving sport performance

[Devrièse-Sence 2023]

239 coaches from various sports Perceived Usefulness for Coaching (PUC) Perceived Usefulness for Athletes (PUA) Perceived Ease Of Use (PEOU) Perceived Enjoyment (PE) Intention To Use (ITU)

Conclusion

Motivation in VR ++, reported as "Fun" Reported as equally exhausted Limitations of VR headset and other technological devices Considered as useful by professional coaches

Open questions for "serious" training applications: Transfer of skills?

03

VR training projects

Preparing athletes to future anxious conditions

A methodology for introducing competitive anxiety and pressure in VR sports training, application to shooting

Coll. with Hybrid team

	1		
Variable	Baseline (\overline{x}, σ)	Experiment (\overline{x}, σ)	F-statistic
Mean RR (ms)	(648, 97)	(664, 104)	$F_{(1,16)} = 8.21*$
Std RR (ms)	(37.7, 16.08)	(46.13, 20.9)	$F_{(1,16)} = 15.64 * *$
HRV index	(8.4, 2.84)	(10.8, 4.12)	$F_{(1,16)} = 82.04 * *$
LF normalized	(84.5, 8.27)	(90.2, 4.16)	$F_{(1,16)} = 16.84 * *$
HF normalized	(15.47, 8.25)	(9.73, 4.16)	$F_{(1,16)} = 16.85**$

ECG analysis

[Frontiers in Robotics and AI, 2015]

Develop new sensors and signal processing

Training to collaborative complex tasks

Subskill in volley-ball: intercept a ball serve in-between players

Study the decision-making process \rightarrow standard situations

- Design an egocentric uncertainty area

Propose training system to enhance the cooperation \rightarrow simulate situations

Training to collaborative complex tasks

Training to player tracking tasks for goalkeepers

subskill: track several targets and use peripheral information Adaptation of standard MOT protocol (perception only)

4 months training

Training to player tracking tasks for goalkeepers

Design of new cheap large field of view XR systems

Detect fine visual cues

ShareSpace project: Embodied Social Experiences in Hybrid Shared Spaces

Aim: propose innovative AI-based amplifiers to support coordination between people

- Al-driven humans creating change in coordination
- Al-driven amplifiers to enhance fine visual cues

Scientific questions:

- Information Encoding
- Information Readout
- Does VR/AR enable to train these skills?

Context: develop VR-training for Olympic French boxers

REVEA project: serious VR training in boxing

Anticipation of attacks Biofidele experience Transfer of skills

But unrealistic static behavior→ Simulation by imitation

Imitation based learning for physics-based simulation of opponents

Extension of the imitation learning approach to interactions

- Single fighter clip => discriminator => similarity reward.
- Two fighters clip => each agent's interaction discriminator => interaction reward.
- Combined to train each agent imitate the interactive behavior depicted in the datasets.

Experiments and results: Imitation

Example Interaction Clip: Boxing Duo 1

Simulation result

Note that the simulated sequence is similar to the example but does not replay it in the same order

Generative AI for long term strategy simulation

Video-based motion imitation

Innia

Conclusion

Human performance still difficult to capture, model & train Many applications in sports, ergonomics, rehabilitation Metaverse: multiple interactions, network

Challenges

- Headset and interfaces
- Presence, embodiment, transfer...?
- Performance estimation and prediction with sparse or lowquality signals
 cheap and on-site devices?
- Protocols to embed technology in training sessions
- Ethical issues?

Contributors & Questions?

Benoit

Richard Kulpa

Anthony

1ME

Ewa Simon Kijak Malinowski

Ferran Argelaguet

Anatole Lecuyer

